CBS 2019
CBSMD教育中心
中 文

急性冠脉综合征

Abstract

Recommended Article

Trends and Impact of Door-to-Balloon Time on Clinical Outcomes in Patients Aged <75, 75 to 84, and ≥85 Years With ST-Elevation Myocardial Infarction Comparison of Outcomes of Patients With ST-Segment Elevation Myocardial Infarction Treated by Primary Percutaneous Coronary Intervention Analyzed by Age Groups (<75, 75 to 85, and >85 Years); (Results from the Bremen STEMI Registry) Effect of improved door-to-balloon time on clinical outcomes in patients with ST segment elevation myocardial infarction Outcome of patients with ST-segment elevation myocardial infarction undergoing primary percutaneous coronary intervention during on- versus off-hours (a Harmonizing Outcomes with Revascularization and Stents in Acute Myocardial Infarction [HORIZONS-AMI] trial substudy) Managing Multivessel Coronary Artery Disease in Patients With ST-Elevation Myocardial Infarction: A Comprehensive Review National assessment of early β-blocker therapy in patients with acute myocardial infarction in China, 2001-2011: The China Patient-centered Evaluative Assessment of Cardiac Events (PEACE)-Retrospective AMI Study Early invasive versus non-invasive treatment in patients with non-ST-elevation acute coronary syndrome (FRISC-II): 15 year follow-up of a prospective, randomised, multicentre study Impact of treatment delay on mortality in ST-segment elevation myocardial infarction (STEMI) patients presenting with and without haemodynamic instability: results from the German prospective, multicentre FITT-STEMI trial

Clinical Trial2021 Aug 1;152:34-42.

JOURNAL:Am J Cardiol. Article Link

Effect of Lipoprotein (a) Levels on Long-term Cardiovascular Outcomes in Patients with Myocardial Infarction with Nonobstructive Coronary Arteries

SD Gao, WJ Ma, MY Yu Keywords: Lp(a); MINOCA; STEMI; prognostic value; MACE

ABSTRACT

The association between elevated lipoprotein(a) [Lp(a)] and poor outcomes in coronary artery disease (CAD) has been addressed for decades. However, little is known about the prognostic value of Lp(a) in patients with myocardial infarction with nonobstructive coronary arteries (MINOCA). A total of 1179 patients with MINOCA were enrolled and divided into low, medium, and high Lp(a) groups based on the cut-off value of 10 and 30mg/dL. The primary endpoint was major adverse cardiovascular events (MACE), a composite of all-cause death, nonfatal MI, nonfatal stroke, revascularization, and hospitalization for unstable angina or heart failure. Kaplan-Meier and Cox regression analyses were performed. Accuracy was defined as area under the curve (AUC) using a receiver-operating characteristic analysis. Patients with higher Lp(a) levels had a significantly higher incidence of MACE (9.5%, 14.6%, 18.5%; p = 0.002) during the median follow-up of 41.7 months. The risk of MACE also increased with the rising Lp(a) levels even after multivariate adjustment [low Lp(a) group as reference, medium group: hazard ratio (HR) 1.55, 95% confidence interval (CI): 1.02-2.40, p = 0.047; high group: HR 2.07, 95% CI: 1.32-3.25, p = 0.001]. Further, clinically elevated Lp(a) defined as Lp(a) ≥30 mg/dL was closely associated with an increased risk of MACE in overall and in subgroups (all p <0.05). When adding Lp(a) (AUC 0.61) into the Thrombolysis in Myocardial Infarction (TIMI) score (AUC 0.68), the combined model (AUC 0.73) yielded a significant improvement in discrimination for MACE (ΔAUC 0.05, p = 0.032). In conclusion, elevated Lp(a) was strongly associated with a poor prognosis in patients with MINOCA. Adding Lp(a) to traditional risk score further improved risk prediction. Our data, for the first time, confirmed the Lp(a) as a residual risk factor for MINOCA.