CBS 2019
CBSMD教育中心
中 文

急性冠脉综合征

Abstract

Recommended Article

Invasive Management of Acute Myocardial Infarction Complicated by Cardiogenic Shock: A Scientific Statement From the American Heart Association Use of Mechanical Circulatory Support Devices Among Patients With Acute Myocardial Infarction Complicated by Cardiogenic Shock SCAI clinical expert consensus statement on the classification of cardiogenic shock: This document was endorsed by the American College of Cardiology (ACC), the American Heart Association (AHA), the Society of Critical Care Medicine (SCCM), and the Society of Thoracic Surgeons (STS) in April 2019 OPTIMAL USE OF LIPID-LOWERING THERAPY AFTER ACUTE CORONARY SYNDROMES: A Position Paper endorsed by the International Lipid Expert Panel (ILEP) Risk Stratification Guided by the Index of Microcirculatory Resistance and Left Ventricular End-Diastolic Pressure in Acute Myocardial Infarction Effect of a Restrictive vs Liberal Blood Transfusion Strategy on Major Cardiovascular Events Among Patients With Acute Myocardial Infarction and Anemia: The REALITY Randomized Clinical Trial Antiplatelet therapy in patients with myocardial infarction without obstructive coronary artery disease Stent Thrombosis Risk Over Time on the Basis of Clinical Presentation and Platelet Reactivity: Analysis From ADAPT-DES

Clinical TrialVolume 71, Issue 23, June 2018

JOURNAL:J Am Coll Cardiol. Article Link

High-Sensitivity Troponins and Outcomes After Myocardial Infarction

Odqvist M, Andersson PO, Tygesen H et al. Keywords: biomarkers; coronary angiography; coronary artery disease; coronary revascularization; incidence; prognosis

ABSTRACT

BACKGROUND - It remains unknown how the introduction of high-sensitivity cardiac troponin T (hs-cTnT) has affected the incidence, prognosis, and use of coronary angiographies and revascularizations in patients with myocardial infarction (MI).

OBJECTIVES - The aim of this study was to investigate how the incidence of MI and prognosis after a first MI was affected by the introduction of hs-cTnT.

METHODS - In a cohort study, the authors included all patients with a first MI from the Swedish National Patient Registry from 2009 to 2013. Cox regression was used to calculate hazard ratios (HRs) with 95% confidence intervals (CIs) for risk of all-cause mortality, reinfarction, coronary angiographies, and revascularizations in patients with MI diagnosed using hs-cTnT compared with those diagnosed using conventional troponins (cTn).

RESULTS - During the study period, 47,133 MIs were diagnosed using cTn and 40,746 using hs-cTnT. The rate of MI increased by 5% (95% CI: 0% to 10%) after the introduction of hs-cTnT. During 3.9 ± 2.8 years of follow-up, there were 33,492 deaths, with no difference in the risk of all-cause mortality (adjusted HR: 1.00; 95% CI: 0.97 to 1.02). There were, in total, 15,766 reinfarctions during 3.1 ± 2.3 years of follow-up, with the risk of reinfarction reduced by 11% in patients diagnosed using hs-cTnT (adjusted HR: 0.89; 95% CI: 0.86 to 0.91). The use of coronary angiographies (adjusted HR: 1.16; 95% CI: 1.14 to 1.18) and revascularizations (adjusted HR: 1.13; 95% CI: 1.11 to 1.15) increased in the hs-cTnT group.

CONCLUSIONS - In a nationwide cohort study including 87,879 patients with a first MI, the introduction of hs-cTnT was associated with an increased incidence of MI, although with no impact on survival. We also found a reduced risk of reinfarction alongside increased use of coronary angiographies and revascularizations.