CBS 2019
CBSMD教育中心
中 文

充血性心力衰竭

Abstract

Recommended Article

The conductive function of biopolymer corrects myocardial scar conduction blockage and resynchronizes contraction to prevent heart failure Evaluation and Management of Right-Sided Heart Failure: A Scientific Statement From the American Heart Association The Role of the Pericardium in Heart Failure: Implications for Pathophysiology and Treatment Heart Failure With Improved Ejection Fraction-Is it Possible to Escape One’s Past? The Future of Biomarker-Guided Therapy for Heart Failure After the Guiding Evidence-Based Therapy Using Biomarker Intensified Treatment in Heart Failure (GUIDE-IT) Study Dapagliflozin and Cardiovascular Outcomes in Type 2 Diabetes Reduced Apolipoprotein M and Adverse Outcomes Across the Spectrum of Human Heart Failure Prior Pacemaker Implantation and Clinical Outcomes in Patients With Heart Failure and Preserved Ejection Fraction

Consensus2019 Oct 21;40(40):3297-3317.

JOURNAL:Eur Heart J. Article Link

How to diagnose heart failure with preserved ejection fraction: the HFA–PEFF diagnostic algorithm: a consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC)

Pieske B Tschöpe C, de Boer RA et al. Keywords: HFpEF; Heart failure; biomarkers; diagnosis; echocardiography; exercise echocardiography; natriuretic peptides

ABSTRACT


Making a firm diagnosis of chronic heart failure with preserved ejection fraction (HFpEF) remains a challenge. We recommend a new stepwise diagnostic process, the ‘HFA–PEFF diagnostic algorithm’. Step 1 (P=Pre-test assessment) is typically performed in the ambulatory setting and includes assessment for HF symptoms and signs, typical clinical demographics (obesity, hypertension, diabetes mellitus, elderly, atrial fibrillation), and diagnostic laboratory tests, electrocardiogram, and echocardiography. In the absence of overt non-cardiac causes of breathlessness, HFpEF can be suspected if there is a normal left ventricular ejection fraction, no significant heart valve disease or cardiac ischaemia, and at least one typical risk factor. Elevated natriuretic peptides support, but normal levels do not exclude a diagnosis of HFpEF. The second step (E: Echocardiography and Natriuretic Peptide Score) requires comprehensive echocardiography and is typically performed by a cardiologist. Measures include mitral annular early diastolic velocity (e′), left ventricular (LV) filling pressure estimated using E/e′, left atrial volume index, LV mass index, LV relative wall thickness, tricuspid regurgitation velocity, LV global longitudinal systolic strain, and serum natriuretic peptide levels. Major (2 points) and Minor (1 point) criteria were defined from these measures. A score ≥5 points implies definite HFpEF; ≤1 point makes HFpEF unlikely. An intermediate score (2–4 points) implies diagnostic uncertainty, in which case Step 3 (F1: Functional testing) is recommended with echocardiographic or invasive haemodynamic exercise stress tests. Step 4 (F2: Final aetiology) is recommended to establish a possible specific cause of HFpEF or alternative explanations. Further research is needed for a better classification of HFpEF.