CBS 2019
CBSMD教育中心
中 文

充血性心力衰竭

Abstract

Recommended Article

Stage B heart failure: management of asymptomatic left ventricular systolic dysfunction SGLT2 Inhibitors in Patients With Heart Failure With Reduced Ejection Fraction: A Meta-Analysis of the EMPEROR-Reduced and DAPA-HF Trials Glucose-lowering Drugs or Strategies, Atherosclerotic Cardiovascular Events, and Heart Failure in People With or at Risk of Type 2 Diabetes: An Updated Systematic Review and Meta-Analysis of Randomised Cardiovascular Outcome Trials 2019 ACC Expert Consensus Decision Pathway on Risk Assessment, Management, and Clinical Trajectory of Patients Hospitalized With Heart Failure: A Report of the American College of Cardiology Solution Set Oversight Committee 3D Printing and Heart Failure: The Present and the Future Effect of empagliflozin on exercise ability and symptoms in heart failure patients with reduced and preserved ejection fraction, with and without type 2 diabetes Fluid Volume Overload and Congestion in Heart Failure: Time to Reconsider Pathophysiology and How Volume Is Assessed sST2 Predicts Outcome in Chronic Heart Failure Beyond NT−proBNP and High-Sensitivity Troponin T

Review Article2020 Jul 16;229:1-17.

JOURNAL:Am Heart J . Article Link

Clinical applications of machine learning in the diagnosis, classification, and prediction of heart failure

CR Olsen, RJ Mentz, KJ Anstrom et al. Keywords: machine learning; artificial intelligence;

ABSTRACT

Machine learning and artificial intelligence are generating significant attention in the scientific community and media. Such algorithms have great potential in medicine for personalizing and improving patient care, including in the diagnosis and management of heart failure. Many physicians are familiar with these terms and the excitement surrounding them, but many are unfamiliar with the basics of these algorithms and how they are applied to medicine. Within heart failure research, current applications of machine learning include creating new approaches to diagnosis, classifying patients into novel phenotypic groups, and improving prediction capabilities. In this paper, we provide an overview of machine learning targeted for the practicing clinician and evaluate current applications of machine learning in the diagnosis, classification, and prediction of heart failure.