CBS 2019
CBSMD教育中心
中 文

Congestive Heart Failure

Abstract

Recommended Article

Dapagliflozin in Patients with Heart Failure and Reduced Ejection Fraction Effect of empagliflozin on exercise ability and symptoms in heart failure patients with reduced and preserved ejection fraction, with and without type 2 diabetes Randomized Evaluation of Heart Failure With Preserved Ejection Fraction Patients With Acute Heart Failure and Dopamine - The ROPA-DOP Trial SGLT2 Inhibitors in Patients With Heart Failure With Reduced Ejection Fraction: A Meta-Analysis of the EMPEROR-Reduced and DAPA-HF Trials The multiple causes and treatments of heart failure: focus on genetic and molecular mechanisms and non-pharmacological interventions Prdm16 Deficiency Leads to Age-Dependent Cardiac Hypertrophy, Adverse Remodeling, Mitochondrial Dysfunction, and Heart Failure Modifiable lifestyle factors and heart failure: A Mendelian randomization study Association of Abnormal Left Ventricular Functional Reserve With Outcome in Heart Failure With Preserved Ejection Fraction

Clinical TrialVolume 6, Issue 10, October 2018

JOURNAL:JACC: Heart Failure Article Link

Randomized Evaluation of Heart Failure With Preserved Ejection Fraction Patients With Acute Heart Failure and Dopamine - The ROPA-DOP Trial

K Sharma, Stuart D. Russell and on behalf of the Osler Medical Housestaff. Keywords: acute decompensated heart failurediuresisdopamineheart failure with preserved ejection fraction; worsening renal function

ABSTRACT


OBJECTIVES - This study sought to compare a continuous infusion diuretic strategy versus an intermittent bolus diuretic strategy, with the addition of low-dose dopamine (3 μg/kg/min) in the treatment of hospitalized patients with heart failure with preserved ejection fraction (HFpEF).


BACKGROUND - HFpEF patients are susceptible to development of worsening renal function (WRF) when hospitalized with acute heart failure; however, inpatient treatment strategies to achieve safe and effective diuresis in HFpEF patients have not been studied to date.


METHODS - In a prospective, randomized, clinical trial, 90 HFpEF patients hospitalized with acute heart failure were randomized within 24 h of admission to 1 of 4 treatments: 1) intravenous bolus furosemide administered every 12 h; 2) continuous infusion furosemide; 3) intermittent bolus furosemide with low-dose dopamine; and 4) continuous infusion furosemide with low-dose dopamine. The primary endpoint was percent change in creatinine from baseline to 72 h. Linear and logistic regression analyses with tests for interactions between diuretic and dopamine strategies were performed.


RESULTS - Compared to intermittent bolus strategy, the continuous infusion strategy was associated with higher percent increase in creatinine (continuous infusion: 16.01%; 95% confidence interval [CI]: 8.58% to 23.45% vs. intermittent bolus: 4.62%; 95% CI: −1.15% to 10.39%; p = 0.02). Low-dose dopamine had no significant effect on percent change in creatinine (low-dose dopamine: 12.79%; 95% CI: 5.66% to 19.92%, vs. no-dopamine: 8.03%; 95% CI: 1.44% to 14.62%; p = 0.33). Continuous infusion was also associated with greater risk of WRF than intermittent bolus (odds ratio [OR]: 4.32; 95% CI: 1.26 to 14.74; p = 0.02); no differences in WRF risk were seen with low-dose dopamine. No significant interaction was seen between diuretic strategy and low-dose dopamine (p > 0.10).


CONCLUSIONS - In HFpEF patients hospitalized with acute heart failure, low-dose dopamine had no significant impact on renal function, and a continuous infusion diuretic strategy was associated with renal impairment. (Diuretics and Dopamine in Heart Failure With Preserved Ejection Fraction [ROPA-DOP]; NCT01901809)