CBS 2019
CBSMD教育中心
中 文

Congestive Heart Failure

Abstract

Recommended Article

Proteomics to Improve Phenotyping in Obese Patients with Heart Failure with Preserved Ejection Fraction Cardiac resynchronization therapy with a defibrillator (CRTd) in failing heart patients with type 2 diabetes mellitus and treated by glucagon-like peptide 1 receptor agonists (GLP-1 RA) therapy vs. conventional hypoglycemic drugs: arrhythmic burden, hospitalizations for heart failure, and CRTd responders rate Criteria for Iron Deficiency in Patients With Heart Failure 21st Century CE: The New Iron Age? Effect of SGLT2-Inhibitors on Epicardial Adipose Tissue: A Meta-Analysis 2018 ACC/AHA/HRS Guideline on the Evaluation and Management of Patients With Bradycardia and Cardiac Conduction Delay: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society Association of the Hospital Readmissions Reduction Program With Mortality Among Medicare Beneficiaries Hospitalized for Heart Failure, Acute Myocardial Infarction, and Pneumonia AIM2-driven inflammasome activation in heart failure

Original ResearchVolume 7, Issue 3, March 2019

JOURNAL:JACC: Heart Failure Article Link

Sex Differences in Heart Failure With Preserved Ejection Fraction Pathophysiology: A Detailed Invasive Hemodynamic and Echocardiographic Analysis

AL Beale, S Nanayakkara, L Segan et al. Keywords: echocardiography; heart failure with preserved ejection fraction; hemodynamics; sex differences; women

ABSTRACT


OBJECTIVES - This study sought to identify sex differences in central and peripheral factors that contribute to the pathophysiology of heart failure with preserved ejection fraction (HFpEF) by using complementary invasive hemodynamic and echocardiographic approaches.

BACKGROUND - Women are overrepresented among patients with HFpEF, and there are established sex differences in myocardial structure and function. Exercise intolerance is a fundamental feature of HFpEF; however, sex differences in the physiological determinants of exercise capacity in HFpEF are yet to be established.

METHODS - Patients with exertional intolerance with confirmed HFpEF were included in this study. Evaluation of the subjects included resting and exercise hemodynamics, echocardiography, and mixed venous blood gas sampling.

RESULTS - A total of 161 subjects included 114 females (71%). Compared to males, females had a higher pulmonary capillary wedge pressure (PCWP) indexed to peak exercise workload (0.8 [0.5 to 1.2] mm Hg/W vs. 0.6 [0.4 to 1] mm Hg/W, respectively; p = 0.001) and lower systemic (1.1 [0.9 to 1.5] ml/mm Hg vs. 1 [0.7 to 1.2] ml/mm Hg, respectively; p = 0.019) and pulmonary (2.9 [2.2 to 4.2] ml/mm Hg vs. 2.4 [1.9 to 3] ml/mm Hg, respectively; p = 0.032) arterial compliance at exercise. Mixed venous blood gas analysis demonstrated a greater rise in lactate indexed to peak workload (0.05 [0.04 to 0.09] mmol/l/W vs. 0.04 [0.03 to 0.06] mmol/l/W, respectively; p = 0.007) in women compared to men. Women had higher mitral inflow velocity to diastolic mitral annular velocity at early filling (E/e) ratios at rest and peak exercise, along with a higher ejection fraction and smaller ventricular dimensions.

CONCLUSIONS - Women with HFpEF demonstrate poorer diastolic reserve with higher echocardiographic and invasive measurements of left ventricular filling pressures at exercise, accompanied by lower systemic and pulmonary arterial compliance and poorer peripheral oxygen kinetics.