CBS 2019
CBSMD教育中心
中 文

Congestive Heart Failure

Abstract

Recommended Article

Association of Abnormal Left Ventricular Functional Reserve With Outcome in Heart Failure With Preserved Ejection Fraction Efficacy of Ertugliflozin on Heart Failure–Related Events in Patients With Type 2 Diabetes Mellitus and Established Atherosclerotic Cardiovascular Disease Results of the VERTIS CV Trial Heart failure with preserved ejection fraction: from mechanisms to therapies 2019 ACC Expert Consensus Decision Pathway on Risk Assessment, Management, and Clinical Trajectory of Patients Hospitalized With Heart Failure A Report of the American College of Cardiology Solution Set Oversight Committee Diagnosis of Nonischemic Stage B Heart Failure in Type 2 Diabetes Mellitus: Optimal Parameters for Prediction of Heart Failure The Hospital Readmissions Reduction Program Nationwide Perspectives and Recommendations: A JACC: Heart Failure Position Paper A pragmatic approach to the use of inotropes for the management of acute and advanced heart failure: An expert panel consensus Ambulatory Inotrope Infusions in Advanced Heart Failure - A Systematic Review and Meta-Analysis

Review Article2017 Mar;22(2):243-261.

JOURNAL:Heart Fail Rev. Article Link

SPECT and PET in ischemic heart failure

Angelidis G, Giamouzis G, Karagiannis G et al. Keywords: 18-fluoro-deoxyglucose; Heart failure; Ischemic; PET; Positron emission tomography; Rubidium-82; SPECT; Single photon emission computed tomography; Technetium-99 m; Thallium-201; Viability

ABSTRACT


Heart failure is a common clinical syndrome associated with significant morbidity and mortality worldwide. Ischemic heart disease is the leading cause of heart failure, at least in the industrialized countries. Proper diagnosis of the syndrome and management of patients with heart failure require anatomical and functional information obtained through various imaging modalities. Nuclear cardiology techniques play a main role in the evaluation of heart failure. Myocardial single photon emission computed tomography (SPECT) with thallium-201 or technetium-99 m labelled tracers offer valuable data regarding ventricular function, myocardial perfusion, viability, and intraventricular synchronism. Moreover, positron emission tomography (PET) permits accurate evaluation of myocardial perfusion, metabolism, and viability, providing high-quality images and the ability of quantitative analysis. As these imaging techniques assess different parameters of cardiac structure and function, variations of sensitivity and specificity have been reported among them. In addition, the role of SPECT and PET guided therapy remains controversial. In this comprehensive review, we address these controversies and report the advances in patient's investigation with SPECT and PET in ischemic heart failure. Furthermore, we present the innovations in technology that are expected to strengthen the role of nuclear cardiology modalities in the investigation of heart failure.