CBS 2019
CBSMD教育中心
中 文

Congestive Heart Failure

Abstract

Recommended Article

Glucose-lowering Drugs or Strategies, Atherosclerotic Cardiovascular Events, and Heart Failure in People With or at Risk of Type 2 Diabetes: An Updated Systematic Review and Meta-Analysis of Randomised Cardiovascular Outcome Trials 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines Titration of Medical Therapy for Heart Failure With Reduced Ejection Fraction Empagliflozin Increases Cardiac Energy Production in Diabetes - Novel Translational Insights Into the Heart Failure Benefits of SGLT2 Inhibitors Exercise Intolerance in Patients With Heart Failure: JACC State-of-the-Art Review Antithrombotics From Aspirin to DOACs in Coronary Artery Disease and Atrial Fibrillation (Part 3/5) The Role of the Pericardium in Heart Failure: Implications for Pathophysiology and Treatment The conductive function of biopolymer corrects myocardial scar conduction blockage and resynchronizes contraction to prevent heart failure

Original Research2020 Aug 3;258:120285.

JOURNAL:Biomaterials. Article Link

The conductive function of biopolymer corrects myocardial scar conduction blockage and resynchronizes contraction to prevent heart failure

S He, J Wu, RK Li et al. Keywords: conductive biomaterial; HF; myocardial infarction; resynchronization.

ABSTRACT

Myocardial fibrosis, resulting from ischemic injury, increases tissue resistivity in the infarct area, which impedes heart synchronous electrical propagation. The uneven conduction between myocardium and fibrotic tissue leads to dys-synchronous contraction, which progresses towards ventricular dysfunction. We synthesized a conductive poly-pyrrole-chitosan hydrogel (PPY-CHI), and investigated its capabilities in improving electrical propagation in fibrotic tissue, as well as resynchronizing cardiac contraction to preserve cardiac function. In an in vitro fibrotic scar model, conductivity increased in proportion to the amount of PPY-CHI hydrogel added. To elucidate the mechanism of interaction between myocardial ionic changes and electrical current, an equivalent circuit model was used, which showed that PPY-CHI resistance was 10 times lower, and latency time 5 times shorter, compared to controls. Using a rat myocardial infarction (MI) model, PPY-CHI was injected into fibrotic tissue 7 days post MI. There, PPY-CHI reduced tissue resistance by 30%, improved electrical conduction across the fibrotic scar by 33%, enhanced field potential amplitudes by 2 times, and resynchronized cardiac contraction. PPY-CHI hydrogel also preserved cardiac function at 3 months, and reduced susceptibility to arrhythmia by 30% post-MI. These data demonstrated that the conductive PPY-CHI hydrogel reduced fibrotic scar resistivity, and enhanced electrical conduction, to synchronize cardiac contraction.