CBS 2019
CBSMD教育中心
中 文

Congestive Heart Failure

Abstract

Recommended Article

Effect of Natriuretic Peptide-Guided Therapy on Hospitalization or Cardiovascular Mortality in High-Risk Patients With Heart Failure and Reduced Ejection Fraction: A Randomized Clinical Trial Effects of Vildagliptin on Ventricular Function in Patients With Type 2 Diabetes Mellitus and Heart Failure: A Randomized Placebo-Controlled Trial Phenomapping for Novel Classification of Heart Failure With Preserved Ejection Fraction Transcatheter Interatrial Shunt Device for the Treatment of Heart Failure With Preserved Ejection Fraction (REDUCE LAP-HF I [Reduce Elevated Left Atrial Pressure in Patients With Heart Failure]): A Phase 2, Randomized, Sham-Controlled Trial Permanent pacemaker use among patients with heart failure and preserved ejection fraction: Findings from the Acute Decompensated Heart Failure National Registry (ADHERE) National Registry A Fully Magnetically Levitated Left Ventricular Assist Device — Final Report Sex Differences in Heart Failure With Preserved Ejection Fraction Pathophysiology: A Detailed Invasive Hemodynamic and Echocardiographic Analysis Association of Prior Left Ventricular Ejection Fraction With Clinical Outcomes in Patients With Heart Failure With Midrange Ejection Fraction

Original Research2020 Aug 3;258:120285.

JOURNAL:Biomaterials. Article Link

The conductive function of biopolymer corrects myocardial scar conduction blockage and resynchronizes contraction to prevent heart failure

S He, J Wu, RK Li et al. Keywords: conductive biomaterial; HF; myocardial infarction; resynchronization.

ABSTRACT

Myocardial fibrosis, resulting from ischemic injury, increases tissue resistivity in the infarct area, which impedes heart synchronous electrical propagation. The uneven conduction between myocardium and fibrotic tissue leads to dys-synchronous contraction, which progresses towards ventricular dysfunction. We synthesized a conductive poly-pyrrole-chitosan hydrogel (PPY-CHI), and investigated its capabilities in improving electrical propagation in fibrotic tissue, as well as resynchronizing cardiac contraction to preserve cardiac function. In an in vitro fibrotic scar model, conductivity increased in proportion to the amount of PPY-CHI hydrogel added. To elucidate the mechanism of interaction between myocardial ionic changes and electrical current, an equivalent circuit model was used, which showed that PPY-CHI resistance was 10 times lower, and latency time 5 times shorter, compared to controls. Using a rat myocardial infarction (MI) model, PPY-CHI was injected into fibrotic tissue 7 days post MI. There, PPY-CHI reduced tissue resistance by 30%, improved electrical conduction across the fibrotic scar by 33%, enhanced field potential amplitudes by 2 times, and resynchronized cardiac contraction. PPY-CHI hydrogel also preserved cardiac function at 3 months, and reduced susceptibility to arrhythmia by 30% post-MI. These data demonstrated that the conductive PPY-CHI hydrogel reduced fibrotic scar resistivity, and enhanced electrical conduction, to synchronize cardiac contraction.