CBS 2019
CBSMD教育中心
中 文

Congestive Heart Failure

Abstract

Recommended Article

Metformin Lowers Body Weight But Fails to Increase Insulin Sensitivity in Chronic Heart Failure Patients without Diabetes: a Randomized, Double-Blind, Placebo-Controlled Study Cardiovascular Aging and Heart Failure: JACC Review Topic of the Week Lateral Wall Dysfunction Signals Onset of Progressive Heart Failure in Left Bundle Branch Block Sex- and Race-Related Differences in Characteristics and Outcomes of Hospitalizations for Heart Failure With Preserved Ejection Fraction Heart Failure With Mid-Range (Borderline) Ejection Fraction: Clinical Implications and Future Directions Clinical epidemiology of heart failure with preserved ejection fraction (HFpEF) in comparatively young hospitalized patients Effects of Liraglutide on Cardiovascular Outcomes in Patients With Diabetes With or Without Heart Failure Diagnostic performance of congestion score index evaluated from chest radiography for acute heart failure in the emergency department: A retrospective analysis from the PARADISE cohort

Review Article2020 Sep 21;S0033-0620(20)30158-4.

JOURNAL:Prog Cardiovasc Dis. Article Link

Mechanical circulatory support devices in advanced heart failure: 2020 and beyond

JL Vieira, HO Ventura, MR Mehra et al. Keywords: advanced heart failure; cardiogenic shock; hemocompatibility; INTERMACS; LVAD; left ventricular assist device; mechanical circulatory support

ABSTRACT

Substantial progress in the field of mechanical circulatory support (MCS) has expanded the treatment options for patients with advanced-stage heart failure (HF). Currently available MCS devices can be implanted percutaneously or surgically. They can also be configured to support the left, right, or both ventricles, offering varying levels of circulatory support. Short-term temporary MCS devices are primarily used in high-risk percutaneous coronary intervention, cardiogenic shock, and post-cardiac arrest, while durable left ventricular assist systems (LVAS) are increasingly utilized either as a bridge-to-transplant, bridge to decision, or as a destination therapy. The evolution from older pulsatile devices to continuous-flow LVAS and the incorporation of smaller pumps, with no valves, fewer moving parts, and improved hemocompatibility has translated into improved clinical outcomes, greater durability, fewer adverse events, and reduced overall cost of care. However, despite marked advances in device design and clinical management, determining MCS candidacy is often difficult and requires the integration of clinical, biomarker, imaging, exercise, and hemodynamic data. This review aims to provide a summary of the current use of short-term and durable MCS devices in the treatment of advanced-stage HF, highlighting several aspects of LVAS support and the challenges that remain.