CBS 2019
CBSMD教育中心
中 文

Congestive Heart Failure

Abstract

Recommended Article

Glucose-lowering Drugs or Strategies, Atherosclerotic Cardiovascular Events, and Heart Failure in People With or at Risk of Type 2 Diabetes: An Updated Systematic Review and Meta-Analysis of Randomised Cardiovascular Outcome Trials 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines Titration of Medical Therapy for Heart Failure With Reduced Ejection Fraction Empagliflozin Increases Cardiac Energy Production in Diabetes - Novel Translational Insights Into the Heart Failure Benefits of SGLT2 Inhibitors Exercise Intolerance in Patients With Heart Failure: JACC State-of-the-Art Review Antithrombotics From Aspirin to DOACs in Coronary Artery Disease and Atrial Fibrillation (Part 3/5) The Role of the Pericardium in Heart Failure: Implications for Pathophysiology and Treatment The conductive function of biopolymer corrects myocardial scar conduction blockage and resynchronizes contraction to prevent heart failure

Review Article2020 Jul 16;229:1-17.

JOURNAL:Am Heart J . Article Link

Clinical applications of machine learning in the diagnosis, classification, and prediction of heart failure

CR Olsen, RJ Mentz, KJ Anstrom et al. Keywords: machine learning; artificial intelligence;

ABSTRACT

Machine learning and artificial intelligence are generating significant attention in the scientific community and media. Such algorithms have great potential in medicine for personalizing and improving patient care, including in the diagnosis and management of heart failure. Many physicians are familiar with these terms and the excitement surrounding them, but many are unfamiliar with the basics of these algorithms and how they are applied to medicine. Within heart failure research, current applications of machine learning include creating new approaches to diagnosis, classifying patients into novel phenotypic groups, and improving prediction capabilities. In this paper, we provide an overview of machine learning targeted for the practicing clinician and evaluate current applications of machine learning in the diagnosis, classification, and prediction of heart failure.