CBS 2019
CBSMD教育中心
中 文

Congestive Heart Failure

Abstract

Recommended Article

The Hospital Readmissions Reduction Program Nationwide Perspectives and Recommendations: A JACC: Heart Failure Position Paper 2022 AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines SGLT2 Inhibitors in Patients With Heart Failure With Reduced Ejection Fraction: A Meta-Analysis of the EMPEROR-Reduced and DAPA-HF Trials Mechanical circulatory support devices for acute right ventricular failure Heart Failure With Improved Ejection Fraction-Is it Possible to Escape One’s Past? Proteomics to Improve Phenotyping in Obese Patients with Heart Failure with Preserved Ejection Fraction Clinical applications of machine learning in the diagnosis, classification, and prediction of heart failure Sodium-Glucose Co-Transporter 2 Inhibitors and Insights from Biomarker Measurement in Heart Failure Patients

Review Article2020 Jul 16;229:1-17.

JOURNAL:Am Heart J . Article Link

Clinical applications of machine learning in the diagnosis, classification, and prediction of heart failure

CR Olsen, RJ Mentz, KJ Anstrom et al. Keywords: machine learning; artificial intelligence;

ABSTRACT

Machine learning and artificial intelligence are generating significant attention in the scientific community and media. Such algorithms have great potential in medicine for personalizing and improving patient care, including in the diagnosis and management of heart failure. Many physicians are familiar with these terms and the excitement surrounding them, but many are unfamiliar with the basics of these algorithms and how they are applied to medicine. Within heart failure research, current applications of machine learning include creating new approaches to diagnosis, classifying patients into novel phenotypic groups, and improving prediction capabilities. In this paper, we provide an overview of machine learning targeted for the practicing clinician and evaluate current applications of machine learning in the diagnosis, classification, and prediction of heart failure.