CBS 2019
CBSMD教育中心
中 文

Congestive Heart Failure

Abstract

Recommended Article

Baseline Features of the VICTORIA (Vericiguat Global Study in Subjects With Heart Failure With Reduced Ejection Fraction) Trial Effect of empagliflozin on exercise ability and symptoms in heart failure patients with reduced and preserved ejection fraction, with and without type 2 diabetes Efficacy of Ertugliflozin on Heart Failure–Related Events in Patients With Type 2 Diabetes Mellitus and Established Atherosclerotic Cardiovascular Disease Results of the VERTIS CV Trial Effects of Liraglutide on Cardiovascular Outcomes in Patients With Diabetes With or Without Heart Failure Nitrosative stress drives heart failure with preserved ejection fraction Contemporary prevalence of pulmonary arterial hypertension in adult congenital heart disease following the updated clinical classification Nocturnal thoracic volume overload and post-discharge outcomes in patients hospitalized for acute heart failure Universal Definition and Classification of Heart Failure: A Report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure

Expert Opinion2018 Apr 3;71(13):1483-1493.

JOURNAL:J Am Coll Cardiol. Article Link

Cardiac Implantable Electronic Devices in Patients With Left Ventricular Assist Systems

Berg DD, Vaduganathan M, Stewart GC et al. Keywords: advanced heart failure; implantable cardioverter-defibrillator; left ventricular assist system; mechanical circulatory support; permanent pacemaker

ABSTRACT


Recent progress and evolution in device engineering, surgical implantation practices, and periprocedural management have advanced the promise of durable support with left ventricular assist systems (LVAS) in patients with stage D heart failure. With greater uptake of LVAS globally, a growing population of LVAS recipients have pre-existing cardiac implantable electronic devices (CIEDs). Strategies for optimal clinical management of CIEDs in patients with durable LVAS are evolving, and clinicians will increasingly face complex decisions regarding implantation, programming, deactivation, and removal of CIEDs. Traditional decision-making pathways for CIEDs may not apply to LVAS-supported patients, as few patients die of arrhythmic causes and many arrhythmias may be well tolerated. Given limited data, treatment decisions must be individualized and made collaboratively among electrophysiologists, advanced heart failure specialists, and patients and their caregivers. Large, prospective, well-conducted studies are needed to better understand the contemporary utility of CIEDs in patients with newer-generation LVAS.