CBS 2019
CBSMD教育中心
中 文

动脉粥样硬化性心血管疾病预防

Abstract

Recommended Article

Initial Invasive or Conservative Strategy for Stable Coronary Disease From Subclinical Atherosclerosis to Plaque Progression and Acute Coronary Events In patients with stable coronary heart disease, low-density lipoprotein-cholesterol levels < 70 mg/dL and glycosylated hemoglobin A1c < 7% are associated with lower major cardiovascular events Sleep quality and risk of coronary heart disease-a prospective cohort study from the English longitudinal study of ageing Mediterranean Diet and the Association Between Air Pollution and Cardiovascular Disease Mortality Risk Clinical Risk Factors and Atherosclerotic Plaque Extent to Define Risk for Major Events in Patients Without Obstructive Coronary Artery Disease: The Long-Term Coronary Computed Tomography Angiography CONFIRM Registry 2019 ACC/AHA/ASE Advanced Training Statement on Echocardiography (Revision of the 2003 ACC/AHA Clinical Competence Statement on Echocardiography): A Report of the ACC Competency Management Committee From Focal Lipid Storage to Systemic Inflammation

Clinical Trial2020 Dec 11;S1936-878X(20)30941-4.

JOURNAL:JACC Cardiovasc Imaging. Article Link

High-Risk Coronary Plaque Regression After Intensive Lifestyle Intervention in Nonbstructive Coronary Disease: A Randomized Study

J Henzel, C Kępka, M Kruk et al. Keywords: high-risk plaque burden; ASCVD progression; lifestyle intervention; RCT

ABSTRACT

OBJECTIVES - The authors sought to study the impact of diet and lifestyle intervention on changes in atherosclerotic plaque volume and composition.

 

BACKGROUND - Lifestyle and diet modification are the leading strategies to manage coronary artery disease; however, their direct impact on atherosclerosis remains unknown. Coronary plaque composition is related to the risk of future cardiovascular events independent of stenosis severity and can be conveniently evaluated with computed tomography angiography (CTA).

 

METHODS - We enrolled 92 patients (41% women; mean age 60 ± 7.7 years) with nonobstructive (<70% stenosis) coronary atherosclerosis identified by CTA. Participants were randomized (1:1) to either the DISCO (Dietary Intervention to Stop Coronary Atherosclerosis in Computed Tomography) intervention group (systematic follow-up by a dietitian to adhere to the Dietary Approaches to Stop Hypertension nutrition model together with optimal medical therapy [OMT]) or the control group (OMT alone). In all patients, CTA was repeated after 66.9 ± 13.7 weeks. The outcome was change (Δ) in atheroma volume and plaque composition. Based on atherosclerotic tissue attenuation ranges in Hounsfield units (HU), the following components of coronary plaque were distinguished: dense calcium (>351 HU), fibrous plaque (151 to 350 HU), and fibrofatty plaque combined with necrotic core (-30 to 150 HU), referred to as noncalcified plaque.

 

RESULTS - Percent atheroma volume increased in the control arm (Δ = +1.1 ± 3.4%; p = 0.033) versus no significant change in the experimental arm (Δ = +1.0% ± 4.2%; p = 0.127; intergroup p = 0.851). There was a reduction in noncalcified plaque in both the experimental arm (Δ = 51.3 ± 79.5 mm3 [1.7 ± 2.7%]; p < 0.001) and the control arm (Δ = 21.3 ± 57.7 [0.7 ± 1.9%]; p = 0.018), which was greater in the DISCO intervention group (intergroup p = 0.045). No differences in fibrous component or dense calcium changes were observed between the groups.

 

CONCLUSIONS - Controlled diet and lifestyle intervention together with OMT may slow the progression of atherosclerosis and reduce noncalcified plaque volume compared to OMT alone. (Dietary Intervention to Stop Coronary Atherosclerosis in Computed Tomography [DISCO-CT]; NCT02571803)