CBS 2019
CBSMD教育中心
中 文

ASCVD Prevention

Abstract

Recommended Article

2018 AHA/ACC/AACVPR/AAPA/ABC/ACPM/ADA/AGS/APhA/ASPC/NLA/PCNA Guideline on the Management of Blood Cholesterol: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines Association of Statin Use With All-Cause and Cardiovascular Mortality in US Veterans 75 Years and Older 2019 ACC/AHA Guideline on the Primary Prevention of Cardiovascular Disease: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines Extreme Levels of Air Pollution Associated With Changes in Biomarkers of Atherosclerotic Plaque Vulnerability and Thrombogenicity in Healthy Adults Rationale and design of a large-scale, app-based study to identify cardiac arrhythmias using a smartwatch: The Apple Heart Study Prognostic value of coronary artery calcium screening in subjects with and without diabetes Simple Electrocardiographic Measures Improve Sudden Arrhythmic Death Prediction in Coronary Disease Fractional flow reserve derived from CCTA may have a prognostic role in myocardial bridging

Original Research2021 Feb 24.

JOURNAL:N Engl J Med. Article Link

Glycemic Index, Glycemic Load, and Cardiovascular Disease and Mortality

DJA Jenkins, M Dehghan, PURE Study Investigators et al. Keywords: glycemic index; glycemic load; CVD risk

ABSTRACT

BACKGROUD - Most data regarding the association between the glycemic index and cardiovascular disease come from high-income Western populations, with little information from non-Western countries with low or middle incomes. To fill this gap, data are needed from a large, geographically diverse population.


METHODS - This analysis includes 137,851 participants between the ages of 35 and 70 years living on five continents, with a median follow-up of 9.5 years. We used country-specific food-frequency questionnaires to determine dietary intake and estimated the glycemic index and glycemic load on the basis of the consumption of seven categories of carbohydrate foods. We calculated hazard ratios using multivariable Cox frailty models. The primary outcome was a composite of a major cardiovascular event (cardiovascular death, nonfatal myocardial infarction, stroke, and heart failure) or death from any cause.


RESULTS - In the study population, 8780 deaths and 8252 major cardiovascular events occurred during the follow-up period. After performing extensive adjustments comparing the lowest and highest glycemic-index quintiles, we found that a diet with a high glycemic index was associated with an increased risk of a major cardiovascular event or death, both among participants with preexisting cardiovascular disease (hazard ratio, 1.51; 95% confidence interval [CI], 1.25 to 1.82) and among those without such disease (hazard ratio, 1.21; 95% CI, 1.11 to 1.34). Among the components of the primary outcome, a high glycemic index was also associated with an increased risk of death from cardiovascular causes. The results with respect to glycemic load were similar to the findings regarding the glycemic index among the participants with cardiovascular disease at baseline, but the association was not significant among those without preexisting cardiovascular disease.


CONCLUSIONS - In this study, a diet with a high glycemic index was associated with an increased risk of cardiovascular disease and death. (Funded by the Population Health Research Institute and others.)


Copyright © 2021 Massachusetts Medical Society.