CBS 2019
CBSMD教育中心
中 文

经导管主动脉瓣置换

Abstract

Recommended Article

Left Ventricular Rapid Pacing Via the Valve Delivery Guidewire in Transcatheter Aortic Valve Replacement Impact of myocardial fibrosis on left ventricular remodelling, recovery, and outcome after transcatheter aortic valve implantation in different haemodynamic subtypes of severe aortic stenosis Transcatheter Versus Surgical Aortic Valve Replacement in Low-Risk Patients Relationship Between Hospital Surgical Aortic Valve Replacement Volume and Transcatheter Aortic Valve Replacement Outcomes Transcatheter Aortic Valve Replacement in Patients With Multivalvular Heart Disease Frailty in Older Adults Undergoing Aortic Valve Replacement: The FRAILTY-AVR Study Management of Asymptomatic Severe Aortic Stenosis: Evolving Concepts in Timing of Valve Replacement Extracellular Myocardial Volume in Patients With Aortic Stenosis

Original ResearchAugust 2019

JOURNAL:J Am Coll Cardiol. Article Link

Minimizing Permanent Pacemaker Following Repositionable Self-Expanding Transcatheter Aortic Valve Replacement

H Jilaihawi, ZG Zhao, R Du et al. Keywords: pacemaker; PPM; TAVR; transcatheter aortic valve replacement

ABSTRACT


OBJECTIVES - This study sought to minimize the risk of permanent pacemaker implantation (PPMI) with contemporary repositionable self-expanding transcatheter aortic valve replacement (TAVR).

 

BACKGROUND- Self-expanding TAVR traditionally carries a high risk of PPMI. Limited data exist on the use of the repositionable devices to minimize this risk.

 

METHODS- At NYU Langone Health, 248 consecutive patients with severe aortic stenosis underwent TAVR under conscious sedation with repositionable self-expanding TAVR with a standard approach to device implantation. A detailed analysis of multiple factors contributing to PPMI was performed; this was used to generate an anatomically guided MInimizing Depth According to the membranous Septum (MIDAS) approach to device implantation, aiming for pre-release depth in relation to the noncoronary cusp of less than the length of the membranous septum (MS).

 

RESULTS- Right bundle branch block, MS length, largest device size (Evolut 34 XL; Medtronic, Minneapolis, Minnesota), and implant depth > MS length predicted PPMI. On multivariate analysis, only implant depth > MS length (odds ratio: 8.04 [95% confidence interval: 2.58 to 25.04]; p < 0.001) and Evolut 34 XL (odds ratio: 4.96 [95% confidence interval: 1.68 to 14.63]; p = 0.004) were independent predictors of PPMI. The MIDAS approach was applied prospectively to a consecutive series of 100 patients, with operators aiming to position the device at a depth of < MS length whenever possible; this reduced the new PPMI rate from 9.7% (24 of 248) in the standard cohort to 3.0% (p = 0.035), and the rate of new left bundle branch block from 25.8% to 9% (p < 0.001).

 

CONCLUSIONS- Using a patient-specific MIDAS approach to device implantation, repositionable self-expanding TAVR achieved very low and predictable rates of PPMI which are significantly lower than previously reported with self-expanding TAVR.