CBS 2019
CBSMD教育中心
中 文

经导管主动脉瓣置换

Abstract

Recommended Article

Considerations for Optimal Device Selection in Transcatheter Aortic Valve Replacement: A Review Incidence, predictors, and outcomes associated with acute kidney injury in patients undergoing transcatheter aortic valve replacement: from the BRAVO-3 randomized trial Valve‐in‐Valve for Degenerated Transcatheter Aortic Valve Replacement Versus Valve‐in‐Valve for Degenerated Surgical Aortic Bioprostheses: A 3‐Center Comparison of Hemodynamic and 1‐Year Outcome Feasibility of Coronary Access and Aortic Valve Reintervention in Low-Risk TAVR Patients Health Status After Transcatheter Versus Surgical Aortic Valve Replacement in Low-Risk Patients With Aortic Stenosis Right ventricular function and outcome in patients undergoing transcatheter aortic valve replacement Reduced Leaflet Motion after Transcatheter Aortic-Valve Replacement Long-Term Outcomes of Anticoagulation for Bioprosthetic Valve Thrombosis

Clinical TrialVolume 13, Issue 5, March 2020

JOURNAL:JACC Cardiovasc Interv. Article Link

Prior Balloon Valvuloplasty Versus Direct Transcatheter Aortic Valve Replacement: Results From the DIRECTAVI Trial

F Leclercq, P Robert, M Akodad et al. Keywords: balloon aortic valvuloplasty vs TAVR; device success; direct implantation

ABSTRACT


OBJECTIVES - The aim of this study was to evaluate device success of transcatheter aortic valve replacement (TAVR) using new-generation balloon-expandable prostheses with or without balloon aortic valvuloplasty (BAV).

 

BACKGROUND - Randomized studies are lacking comparing TAVR without BAV against the conventional technique of TAVR with BAV.

 

METHODS - DIRECTAVI (Direct Transcatheter Aortic Valve Implantation) was an open-label noninferiority study that randomized patients undergoing TAVR using the Edwards SAPIEN 3 valve with or without prior balloon valvuloplasty. The primary endpoint was the device success rate according to Valve Academic Research Consortium-2 criteria, which was evaluated using a 7% noninferiority margin. The secondary endpoint included procedural and 30-day adverse events.

 

RESULTS - Device success was recorded for 184 of 236 included patients (78.0%). The rate of device success in the direct implantation group (n = 97 [80.2%]) was noninferior to that in the BAV group (n = 87 [75.7%]) (mean difference 4.5%; 95% confidence interval: ?4.4% to 13.4%; p = 0.02 for noninferiority). No severe prosthesis-patient mismatch or severe aortic regurgitation occurred in any group. In the direct implantation group, 7 patients (5.8%) required BAV to cross the valve. Adverse events were related mainly to pacemaker implantation (20.9% in the BAV group vs. 19.0% in the direct implantation group; p = 0.70). No significant difference was found between the 2 strategies in duration of procedure, contrast volume, radiation exposure, or rate of post-dilatation.

 

CONCLUSIONS - Direct TAVR without prior BAV was noninferior to the conventional strategy using BAV with new-generation balloon-expandable valves, but without procedural simplification. BAV was needed to cross the valve in a few patients, suggesting a need for upstream selection on the basis of patient anatomy. (TAVI Without Balloon Predilatation [of the Aortic Valve] SAPIEN 3 [DIRECTAVI]; NCT02729519)