CBS 2019
CBSMD教育中心
中 文

经导管主动脉瓣置换

Abstract

Recommended Article

Clinical impact of conduction disturbances in transcatheter aortic valve replacement recipients: a systematic review and meta-analysis Decline in Left Ventricular Ejection Fraction During Follow-Up in Patients With Severe Aortic Stenosis 2020 ACC Expert Consensus Decision Pathway on Management of Conduction Disturbances in Patients Undergoing Transcatheter Aortic Valve Replacement A Report of the American College of Cardiology Solution Set Oversight Committee Randomized Evaluation of TriGuard 3 Cerebral Embolic Protection After Transcatheter Aortic Valve Replacement: REFLECT II Single Versus Dual Antiplatelet Therapy Following TAVR: A Systematic Review and Meta-Analysis of Randomized Controlled Trials Anticoagulation with or without Clopidogrel after Transcatheter Aortic-Valve Implantation Anticoagulation After Surgical or Transcatheter Bioprosthetic Aortic Valve Replacement Left Ventricular Rapid Pacing Via the Valve Delivery Guidewire in Transcatheter Aortic Valve Replacement

Original ResearchVolume 75, Issue 24, June 2020

JOURNAL:JACC Article Link

Infective Endocarditis After Transcatheter Aortic Valve Replacement

S Stortecky, D Heg, D Tueller, T Pilgrim et al. Keywords: endocarditis; outcomes; TAVR

ABSTRACT

BACKGROUND - Infective endocarditis may affect patients after transcatheter aortic valve replacement (TAVR).


OBJECTIVES - The purpose of this study was to provide detailed information on incidence rates, types of microorganisms, and outcomes of infective endocarditis after TAVR.


METHODS - Between February 2011 and July 2018, consecutive patients from the SwissTAVI Registry were eligible. Infective endocarditis was classified into early (peri-procedural [<100 days] and delayed-early [100 days to 1 year]) and late (>1 year) endocarditis. Clinical events were adjudicated according to the Valve Academic Research Consortium-2 endpoint definitions.


RESULTS - During the observational period, 7,203 patients underwent TAVR at 15 hospitals in Switzerland. During follow-up of 14,832 patient-years, endocarditis occurred in 149 patients. The incidence for peri-procedural, delayed-early, and late endocarditis after TAVR was 2.59, 0.71, and 0.40 events per 100 person-years, respectively. Among patients with early endocarditis,Enterococcus specieswere the most frequently isolated microorganisms (30.1%). Among those with peri-procedural endocarditis, 47.9% of patients had a pathogen that was not susceptible to the peri-procedural antibiotic prophylaxis. Younger age (subhazard ratio [SHR]: 0.969; 95% confidence interval [CI]: 0.944 to 0.994), male sex (SHR: 1.989; 95% CI: 1.403 to 2.818), lack of pre-dilatation (SHR: 1.485; 95% CI: 1.065 to 2.069), and treatment in a catheterization laboratory as opposed to hybrid operating room (SHR: 1.648; 95% CI: 1.187 to 2.287) were independently associated with endocarditis. In a case-control matched analysis, patients with endocarditis were at increased risk of mortality (hazard ratio: 6.55; 95% CI: 4.44 to 9.67) and stroke (hazard ratio: 4.03; 95% CI: 1.54 to 10.52).


CONCLUSIONS - Infective endocarditis after TAVR most frequently occurs during the early period, is commonly caused byEnterococcus species, and results in considerable risks of mortality and stroke. (NCT01368250)