CBS 2019
CBSMD教育中心
中 文

经导管主动脉瓣置换

Abstract

Recommended Article

Chimney technique in a TAVR-in-TAVR procedure with high risk of left main artery ostium occlusion Prevalence and clinical implications of valvular calcification on coronary computed tomography angiography Expert Recommendations on Cardiac Computed Tomography for Planning Transcatheter Left Atrial Appendage Occlusion Bioprosthetic valve oversizing is associated with increased risk of valve thrombosis following TAVR Health Status after Transcatheter vs. Surgical Aortic Valve Replacement in Low-Risk Patients with Aortic Stenosis The Utility of Rapid Atrial Pacing Immediately Post-TAVR to Predict the Need for Pacemaker Implantation Timing of Intervention in Aortic Stenosis Predictors of high residual gradient after transcatheter aortic valve replacement in bicuspid aortic valve stenosis

Original Research2021 May 4;S0022-5223(21)00767-4.

JOURNAL:J Thorac Cardiovasc Surg. Article Link

Outcomes of procedural complications in transfemoral transcatheter aortic valve replacement

ED Percy, M Harloff, T Kaneko et al. Keywords: bundle branch block; pacemaker; paravalvular leak; stroke; survival; TAVR

ABSTRACT

OBJECTIVES - As the application of transcatheter aortic valve replacement (TAVR) expands, the longitudinal implications of periprocedural complications are increasingly relevant. We examine the influence of TAVR complications on midterm survival.

 

METHODS - Patients undergoing transfemoral TAVR at our institution between November 2011 and June 2018 were reviewed. Stroke severity was classified according to the National Institutes of Health stroke score. Kaplan-Meier analysis was used to assess survival, and a Cox proportional hazards model was created to examine independent associations with survival. The median follow-up time was 36 months for a total of 2789 patient-years.

 

RESULTS - Overall, 866 patients were included. The mean age was 80 ± 9.5 years and mean Society of Thoracic Surgeons score was 4.8% ± 2.7%. The mortality rate at 30-days was 2.8% and 11.8% at 1 year. In-hospital left bundle branch block and 30-day permanent pacemaker insertion occurred in 14.8% and 7.9%, respectively. Postprocedural greater-than-mild paravalvular leak was present in 4.4% and stroke occurred in 3.8% at 30-days. Greater-than-mild paravalvular leak was associated with decreased survival at 2 years (P = .02), but not at 5 years. Severe stroke was independently associated with decreased survival at 5 years (hazard ratio, 5.73; 95% confidence interval, 2.29-14.36; P .001); however, the effect of nonsevere stroke did not reach significance (hazard ratio, 1.69; 95% confidence interval, 0.82-3.47; P = .152).

 

CONCLUSIONS - Severe stroke was independently associated with decreased 5-year survival and initial risks associated with paravalvular leak may be attenuated over the midterm following transfemoral TAVR. Strategies to minimize the incidence of stroke and paravalvular leak must be prioritized to improve longitudinal outcomes after TAVR.