CBS 2019
CBSMD教育中心
中 文

Transcatheter Aortic Valve Replacement

Abstract

Recommended Article

A prospective, randomised trial of transapical transcatheter aortic valve implantation vs. surgical aortic valve replacement in operable elderly patients with aortic stenosis: the STACCATO trial The Year in Cardiovascular Medicine 2020: Valvular Heart Disease: Discussing the Year in Cardiovascular Medicine for 2020 in the field of valvular heart disease is Professor Helmut Baumgartner and Dr Javier Bermejo. Mark Nicholls reports Short Length of Stay After Elective Transfemoral Transcatheter Aortic Valve Replacement Is Not Associated With Increased Early or Late Readmission Risk Comparison of Safety and Periprocedural Complications of Transfemoral Aortic Valve Replacement Under Local Anaesthesia: Minimalist Versus Complete Heart Team Meta-Analysis of Effectiveness and Safety of Transcatheter Aortic Valve Implantation Versus Surgical Aortic Valve Replacement in Low-to-Intermediate Surgical Risk Cohort Transcatheter aortic-valve replacement with a self-expanding prosthesis Predictors and Clinical Outcomes of Next-Day Discharge After Minimalist Transfemoral Transcatheter Aortic Valve Replacement Transcatheter Aortic Valve Replacement: Role of Multimodality Imaging in Common and Complex Clinical Scenarios

Clinical Trial2016 Apr 28;374(17):1609-20.

JOURNAL:N Engl J Med. Article Link

Transcatheter or Surgical Aortic-Valve Replacement in Intermediate-Risk Patients

Leon MB, Smith CR, PARTNER 2 Investigators. Keywords: intermediate-risk patients; TAVI; SAVR:

ABSTACT


BACKGROUND - Previous trials have shown that among high-risk patients with aortic stenosis, survival rates are similar with transcatheter aortic-valve replacement (TAVR) and surgical aortic-valve replacement. We evaluated the two procedures in a randomized trial involving intermediate-risk patients.

METHODS - We randomly assigned 2032 intermediate-risk patients with severe aortic stenosis, at 57 centers, to undergo either TAVR or surgical replacement. The primary end point was death from any cause or disabling stroke at 2 years. The primary hypothesis was that TAVR would not be inferior to surgical replacement. Before randomization, patients were entered into one of two cohorts on the basis of clinical and imaging findings; 76.3% of the patients were included in the transfemoral-access cohort and 23.7% in the transthoracic-access cohort.

RESULTS - The rate of death from any cause or disabling stroke was similar in the TAVR group and the surgery group (P=0.001 for noninferiority). At 2 years, the Kaplan-Meier event rates were 19.3% in the TAVR group and 21.1% in the surgery group (hazard ratio in the TAVR group, 0.89; 95% confidence interval [CI], 0.73 to 1.09; P=0.25). In the transfemoral-access cohort, TAVR resulted in a lower rate of death or disabling stroke than surgery (hazard ratio, 0.79; 95% CI, 0.62 to 1.00; P=0.05), whereas in the transthoracic-access cohort, outcomes were similar in the two groups. TAVR resulted in larger aortic-valve areas than did surgery and also resulted in lower rates of acute kidney injury, severe bleeding, and new-onset atrial fibrillation; surgery resulted in fewer major vascular complications and less paravalvular aortic regurgitation.

CONCLUSIONS - In intermediate-risk patients, TAVR was similar to surgical aortic-valve replacement with respect to the primary end point of death or disabling stroke. (Funded by Edwards Lifesciences; PARTNER 2 ClinicalTrials.gov number, NCT01314313.).