CBS 2019
CBSMD教育中心
中 文

Transcatheter Aortic Valve Replacement

Abstract

Recommended Article

2020 ACC Expert Consensus Decision Pathway on Management of Conduction Disturbances in Patients Undergoing Transcatheter Aortic Valve Replacement A Report of the American College of Cardiology Solution Set Oversight Committee Edoxaban versus Vitamin K Antagonist for Atrial Fibrillation after TAVR Computed tomography angiography-derived extracellular volume fraction predicts early recovery of left ventricular systolic function after transcatheter aortic valve replacement Preventing Coronary Obstruction During Transcatheter Aortic Valve Replacement From Computed Tomography to BASILICA Health Status After Transcatheter Versus Surgical Aortic Valve Replacement in Low-Risk Patients With Aortic Stenosis Anticoagulation with or without Clopidogrel after Transcatheter Aortic-Valve Implantation Increased Risk of Valvular Heart Disease in Systemic Sclerosis: An Underrecognized Cardiac Complication Randomized Evaluation of TriGuard 3 Cerebral Embolic Protection After Transcatheter Aortic Valve Replacement: REFLECT II

Clinical Trial2016 Apr 28;374(17):1609-20.

JOURNAL:N Engl J Med. Article Link

Transcatheter or Surgical Aortic-Valve Replacement in Intermediate-Risk Patients

Leon MB, Smith CR, PARTNER 2 Investigators. Keywords: intermediate-risk patients; TAVI; SAVR:

ABSTACT


BACKGROUND - Previous trials have shown that among high-risk patients with aortic stenosis, survival rates are similar with transcatheter aortic-valve replacement (TAVR) and surgical aortic-valve replacement. We evaluated the two procedures in a randomized trial involving intermediate-risk patients.

METHODS - We randomly assigned 2032 intermediate-risk patients with severe aortic stenosis, at 57 centers, to undergo either TAVR or surgical replacement. The primary end point was death from any cause or disabling stroke at 2 years. The primary hypothesis was that TAVR would not be inferior to surgical replacement. Before randomization, patients were entered into one of two cohorts on the basis of clinical and imaging findings; 76.3% of the patients were included in the transfemoral-access cohort and 23.7% in the transthoracic-access cohort.

RESULTS - The rate of death from any cause or disabling stroke was similar in the TAVR group and the surgery group (P=0.001 for noninferiority). At 2 years, the Kaplan-Meier event rates were 19.3% in the TAVR group and 21.1% in the surgery group (hazard ratio in the TAVR group, 0.89; 95% confidence interval [CI], 0.73 to 1.09; P=0.25). In the transfemoral-access cohort, TAVR resulted in a lower rate of death or disabling stroke than surgery (hazard ratio, 0.79; 95% CI, 0.62 to 1.00; P=0.05), whereas in the transthoracic-access cohort, outcomes were similar in the two groups. TAVR resulted in larger aortic-valve areas than did surgery and also resulted in lower rates of acute kidney injury, severe bleeding, and new-onset atrial fibrillation; surgery resulted in fewer major vascular complications and less paravalvular aortic regurgitation.

CONCLUSIONS - In intermediate-risk patients, TAVR was similar to surgical aortic-valve replacement with respect to the primary end point of death or disabling stroke. (Funded by Edwards Lifesciences; PARTNER 2 ClinicalTrials.gov number, NCT01314313.).