CBS 2019
CBSMD教育中心
中 文

Transcatheter Aortic Valve Replacement

Abstract

Recommended Article

Contemporary real-world outcomes of surgical aortic valve replacement in 141,905 low-risk, intermediate-risk, and high-risk patients Gender Differences in Transfemoral Transcatheter Aortic Valve Replacement Decline in Left Ventricular Ejection Fraction During Follow-Up in Patients With Severe Aortic Stenosis Timing of intervention in asymptomatic patients with valvular heart disease Five-Year Outcomes of Transcatheter or Surgical Aortic-Valve Replacement Impact of Severe Sarcopenia on Rehospitalization and Survival One Year After a TAVR Procedure in Patients Aged 75 and Older Outcomes of procedural complications in transfemoral transcatheter aortic valve replacement Guideline Update on Indications for Transcatheter Aortic Valve Implantation Based on the 2020 American College of Cardiology/American Heart Association Guidelines for Management of Valvular Heart Disease

Review ArticleVolume 74, Issue 12, September 2019

JOURNAL:J Am Coll Cardiol. Article Link

Transcatheter Versus Surgical Aortic Valve Replacement in Low-Risk Patients

DKolte, GJ Vlahakes, IF Palacios et al. Keywords: death; low risk; surgical aortic valve replacement; transcatheter aortic valve implantation; transcatheter aortic valve replacement

ABSTRACT


BACKGROUND- Transcatheter aortic valve replacement (TAVR) has emerged as a safe and effective therapeutic option for patients with severe aortic stenosis (AS) who are at prohibitive, high, or intermediate risk for surgical aortic valve replacement (SAVR). However, in low-risk patients, SAVR remains the standard therapy in current clinical practice.

 

OBJECTIVES - This study sought to perform a meta-analysis of randomized controlled trials (RCTs) comparing TAVR versus SAVR in low-risk patients.

 

METHODS - Electronic databases were searched from inception to March 20, 2019. RCTs comparing TAVR versus SAVR in low-risk patients (Society of Thoracic Surgeons Predicted Risk of Mortality [STS-PROM] score <4%) were included. Primary outcome was all-cause death at 1 year. Random-effects models were used to calculate pooled risk ratio (RR) and corresponding 95% confidence interval (CI).

 

RESULTS- The meta-analysis included 4 RCTs that randomized 2,887 patients (1,497 to TAVR and 1,390 to SAVR). The mean age of patients was 75.4 years, and the mean STS-PROM score was 2.3%. Compared with SAVR, TAVR was associated with significantly lower risk of all-cause death (2.1% vs. 3.5%; RR: 0.61; 95% CI: 0.39 to 0.96; p = 0.03; I2 = 0%) and cardiovascular death (1.6% vs. 2.9%; RR: 0.55; 95% CI: 0.33 to 0.90; p = 0.02; I2 = 0%) at 1 year. Rates of new/worsening atrial fibrillation, life-threatening/disabling bleeding, and acute kidney injury stage 2/3 were lower, whereas those of permanent pacemaker implantation and moderate/severe paravalvular leak were higher after TAVR versus SAVR. There were no significant differences between TAVR versus SAVR for major vascular complications, endocarditis, aortic valve re-intervention, and New York Heart Association functional class II.

 

CONCLUSIONS- In this meta-analysis of RCTs comparing TAVR versus SAVR in low-risk patients, TAVR was associated with significantly lower risk of all-cause death and cardiovascular death at 1 year. These findings suggest that TAVR may be the preferred option over SAVR in low-risk patients with severe AS who are candidates for bioprosthetic AVR.