CBS 2019
CBSMD教育中心
中 文

Transcatheter Aortic Valve Replacement

Abstract

Recommended Article

Predictors of high residual gradient after transcatheter aortic valve replacement in bicuspid aortic valve stenosis Impact of Incomplete Coronary Revascularization on Late Ischemic and Bleeding Events after Transcatheter Aortic Valve Replacement Third-Generation Balloon and Self-Expandable Valves for Aortic Stenosis in Large and Extra-Large Aortic Annuli From the TAVR-LARGE Registry Transcatheter Aortic Valve Replacement vs Surgical Replacement in Patients With Pure Aortic Insufficiency Cardiac Structural Changes After Transcatheter Aortic Valve Replacement: Systematic Review and Meta-Analysis of Cardiovascular Magnetic Resonance Studies 2015 ESC Guidelines for the management of infective endocarditis: The Task Force for the Management of Infective Endocarditis of the European Society of Cardiology (ESC) Endorsed by: European Association for Cardio-Thoracic Surgery (EACTS), the European Association of Nuclear Medicine (EANM) Single Versus Dual Antiplatelet Therapy Following TAVR: A Systematic Review and Meta-Analysis of Randomized Controlled Trials Contemporary Presentation and Management of Valvular Heart Disease: The EURObservational Research Programme Valvular Heart Disease II Survey

Original ResearchVolume 13, Issue 5, March 2020

JOURNAL:JACC Cardiovasc Interv. Article Link

Balloon Aortic Valvuloplasty as a Bridge to Aortic Valve Replacement: A Contemporary Nationwide Perspective

A Kawsara, F Alqahtani, MF Eleid et al. Keywords: aortic stenosis; BAV; TAVR

ABSTRACT


OBJECTIVES - This study sought to use a national representative database to assess the incidence, predictors, and outcomes of balloon aortic valvuloplasty (BAV) as a bridge to transcatheter aortic valve replacement (TAVR) in contemporary practice.

 

BACKGROUND - Nationwide data on the use and outcomes of BAV as a bridge to TAVR are limited.

 

METHODS - Patients who underwent BAV between January and June in 2015 and 2016 were identified in the National Readmission Database. We assessed rate of subsequent TAVR following BAV, and predictors and timing of subsequent TAVR. We then identified a group of patients who had direct TAVR (without prior BAV) in the original 2015 to 2016 National Readmission Database dataset. We compared in-hospital outcomes following TAVR between patients with prior bridging BAV and those undergoing direct TAVR.

 

RESULTS - Among the 3,691 included patients 1,426 (38.6%) had subsequent TAVR. Timing of TAVR was pre-discharge in 7.4%, within 30 days in 35%, between 31 and 90 days in 47%, between 91 and 180 days in 14%, and >180 days in 4%. Negative predictors of subsequent TAVR included prior defibrillator (odds ratio [OR]: 0.56; 95% confidence interval [CI]: 0.36 to 0.85), dementia (OR: 0.60; 95% CI: 0.46 to 0.79), malnutrition (OR: 0.64; 95% CI: 0.45 to 0.90), and malignancy (OR: 0.62; 95% CI: 0.47 to 0.82). In propensity-score matched cohorts of patients who underwent direct TAVR versus those with prior BAV, in-hospital mortality during TAVR admission was similar (3.7% vs. 3.5%; p = 0.91). Major complications, length of stay, and discharge disposition were also comparable. However, cost of the hospitalization was higher in the direct TAVR group.

 

CONCLUSIONS - About 40% of BAV patients undergo subsequent TAVR mostly within 90 days. In-hospital outcomes of TAVR in these patients were comparable with propensity-score matched patients who underwent TAVR without prior BAV. Further investigations are needed to define the role of BAV in contemporary practice.