CBS 2019
CBSMD教育中心
中 文

Scientific Library

Abstract

Recommended Article

Non-obstructive High-Risk Plaques Increase the Risk of Future Culprit Lesions Comparable to Obstructive Plaques Without High-Risk Features: The ICONIC Study Angiotensin–neprilysin inhibition versus enalapril in heart failure Subclinical Atherosclerosis Burden by 3D Ultrasound in Mid-Life: The PESA Study Right ventricular function and outcome in patients undergoing transcatheter aortic valve replacement Active factor XI is associated with the risk of cardiovascular events in stable coronary artery disease patients Delirium After TAVR: Crosspassing the Limit of Resilience Safety of six-month dual antiplatelet therapy after second-generation drug-eluting stent implantation: OPTIMA-C Randomised Clinical Trial and OCT Substudy A Randomized Study of Distal Filter Protection Versus Conventional Treatment During Percutaneous Coronary Intervention in Patients With Attenuated Plaque Identified by Intravascular Ultrasound

Review Article2020 Jun 13;jeaa048.

JOURNAL:Eur Heart J Cardiovasc Imaging. Article Link

Non-obstructive High-Risk Plaques Increase the Risk of Future Culprit Lesions Comparable to Obstructive Plaques Without High-Risk Features: The ICONIC Study

RA Ferraro, AR van Rosendael, FY Lin et al. Keywords: coronary computed tomographic angiography, CAD, MI

ABSTRACT

AIMS - High-risk plaque (HRP) and non-obstructive coronary artery disease independently predict adverse events, but their importance to future culprit lesions has not been resolved. We sought to determine in patients prior to confirmed acute coronary syndrome (ACS) the association between lesion percent diameter stenosis (%DS), and the absolute number and prevalence of HRP. The secondary objective was to examine the relative importance of non-obstructive HRP in future culprit lesions.


METHODS AND RESULTS - Within the ICONIC study, a nested case-control study of patients undergoing coronary computed tomographic angiography (coronary CT), we included ACS cases with culprit lesions confirmed by invasive coronary angiography and coregistered to baseline coronary CT. Quantitative CT was used to evaluate obstructive (≥50%) and non-obstructive (<50%) diameter stenosis, with HRP defined as ≥2 features of spotty calcification, positive remodelling, or low-attenuation plaque at baseline. A total of 234 patients with downstream ACS over 54 (interquartile range 5-525.5) days exhibited 198/898 plaques with HRP on coronary CT. While HRP was less prevalent in non-obstructive (19.7%, 161/819) than obstructive lesions (46.8%, 37/79, P < 0.001), non-obstructive plaque comprised 81.3% (161/198) of HRP lesions overall. Among the 128 patients with identifiable culprit lesion precursors, the adjusted hazard ratio (HR) was 1.85 [95% confidence interval (CI) 1.26-2.72] for HRP, with no interaction between %DS and HRP (P = 0.82). Compared to non-obstructive HRP lesions, obstructive lesions without HRP exhibited a non-significant HR of 1.41 (95% CI 0.61-3.25, P = 0.42).


CONCLUSIONS - While HRP is more prevalent among obstructive lesions, non-obstructive HRP lesions outnumber those that are obstructive and confer risk clinically approaching that of obstructive lesions without HRP.