CBS 2019
CBSMD教育中心
中 文

Scientific Library

Abstract

Recommended Article

5-Year Prognostic Value of Quantitative Versus Visual MPI in Subtle Perfusion Defects: Results From REFINE SPECT Nonsystem reasons for delay in door-to-balloon time and associated in-hospital mortality: a report from the National Cardiovascular Data Registry Design and rationale for the treatment effects of provisional side branch stenting and DK crush stenting techniques in patients with unprotected distal left main coronary artery bifurcation lesions (DKCRUSH V) Trial Primary Prevention Trial Designs Using Coronary Imaging: A National Heart, Lung, and Blood Institute Workshop Culotte stenting vs. TAP stenting for treatment of de-novo coronary bifurcation lesions with the need for side-branch stenting: the Bifurcations Bad Krozingen (BBK) II angiographic trial Response by Kaier et al to Letter Regarding Article, “Direct Comparison of Cardiac Myosin-Binding Protein C With Cardiac Troponins for the Early Diagnosis of Acute Myocardial Infarction” Impact of Chronic Total Coronary Occlusion Location on Long-term Survival After Percutaneous Coronary Intervention Fractional flow reserve derived from CCTA may have a prognostic role in myocardial bridging

Original ResearchJune 2019 DOI: 10.1016/j.jcmg.2019.02.028

JOURNAL:JACC: Cardiovascular Imaging Article Link

5-Year Prognostic Value of Quantitative Versus Visual MPI in Subtle Perfusion Defects: Results From REFINE SPECT

Y Otaki, J Betancur, T Sharir et al. Keywords: prognostic value; SPECT; visual MPI; stress total perfusion deficit; MACE

ABSTRACT

OBJECTIVES- This study compared the ability of automated myocardial perfusion imaging analysis to predict major adverse cardiac events (MACE) to that of visual analysis.

 

BACKGROUND- Quantitative analysis has not been compared with clinical visual analysis in prognostic studies.

 

METHODS- A total of 19,495 patients from the multicenter REFINE SPECT (REgistry of Fast Myocardial Perfusion Imaging with NExt generation SPECT) study (64 ± 12 years of age, 56% males) undergoing stress Tc-99m-labeled single-photon emission computed tomography (SPECT) myocardial perfusion imaging were followed for 4.5 ± 1.7 years for MACE. Perfusion abnormalities were assessed visually and categorized as normal, probably normal, equivocal, or abnormal. Stress total perfusion deficit (TPD), quantified automatically, was categorized as TPD = 0%, TPD >0% to <1%, 1% to <3%, 3% to <5%, 5% to 10%, or TPD >10%. MACE consisted of death, nonfatal myocardial infarction, unstable angina, or late revascularization (>90 days). Kaplan-Meier and Cox proportional hazards analyses were performed to test the performance of visual and quantitative assessments in predicting MACE.

 

RESULTS - During follow-up examinations, 2,760 (14.2%) MACE occurred. MACE rates increased with worsening of visual assessments, that is, the rate for normal MACE was 2.0%, 3.2% for probably normal, 4.2% for equivocal, and 7.4% for abnormal (all p < 0.001). MACE rates increased with increasing stress TPD from 1.3% for the TPD category of 0% to 7.8% for the TPD category of >10% (p < 0.0001). The adjusted hazard ratio (HR) for MACE increased even in equivocal assessment (HR: 1.56; 95% confidence interval [CI]: 1.37 to 1.78) and in the TPD category of 3% to <5% (HR: 1.74; 95% CI: 1.41 to 2.14; all p < 0.001). The rate of MACE in patients visually assessed as normal still increased from 1.3% (TPD = 0%) to 3.4% (TPD 5%) (p < 0.0001).

 

CONCLUSIONS - Quantitative analysis allows precise granular risk stratification in comparison to visual reading, even for cases with normal clinical reading.