CBS 2019
CBSMD教育中心
中 文

Scientific Library

Abstract

Recommended Article

Left main coronary artery compression in pulmonary hypertension Prevalence, Presentation and Treatment of 'Balloon Undilatable' Chronic Total Occlusions: Insights from a Multicenter US Registry Clinical Impact of Suboptimal Stenting and Residual Intrastent Plaque/Thrombus Protrusion in Patients With Acute Coronary Syndrome: The CLI-OPCI ACS Substudy (Centro per la Lotta Contro L'Infarto-Optimization of Percutaneous Coronary Intervention in Acute Coronary Syndrome) Nonculprit Lesion Plaque Morphology in Patients With ST-Segment–Elevation Myocardial Infarction: Results From the COMPLETE Trial Optical Coherence Tomography Substudys OCT compared with IVUS in a coronary lesion assessment: the OPUS-CLASS study Percutaneous coronary intervention for coronary bifurcation disease: 11th consensus document from the European Bifurcation Club Residual Shunt After Patent Foramen Ovale Closure and Long-Term Stroke Recurrence: A Prospective Cohort Study Pulmonary Artery Denervation for Pulmonary Arterial Hypertension: A Sham-Controlled Randomized Trial

Original Research2020 Nov 25.

JOURNAL:Catheter Cardiovasc Interv. Article Link

Left main coronary artery compression in pulmonary hypertension

JE Labin, R Saggar, EH Yang et al. Keywords: PAH; left main coronary artery compression;

ABSTRACT

Extrinsic compression of the left main coronary artery (LMCA) by a dilated pulmonary artery (PA) in the setting of pulmonary arterial hypertension (PAH) is an increasingly recognized disease entity. LMCA compression has been associated with angina, arrhythmia, heart failure, and sudden cardiac death in patients with PAH. Recent studies suggest that at least 6% of patients with PAH have significant LMCA compression. Screening for LMCA compression can be achieved with computed coronary tomography angiography, with a particular emphasis on assessment of PA size and any associated downward displacement and reduced takeoff angle of the LMCA. Indeed, evidence of a dilated PA (>40 mm), a reduced LMCA takeoff angle (<60°), and/or LMCA stenosis on CCTA imaging should prompt further diagnostic evaluation. Coronary angiography in conjunction with intravascular imaging has proven effective in diagnosing LMCA compression and guiding subsequent treatment. While optimal medical therapy and surgical correction remain in the clinician's arsenal, percutaneous coronary intervention has emerged as an effective treatment for LMCA compression. Given the prevalence of LMCA compression, its associated morbidity, and mortality, and the wide array of successful treatment strategies, maintaining a high degree of suspicion for this condition, and understanding the potential treatment strategies is critical.