CBS 2019
CBSMD教育中心
English

Stenting Left Main

科研文章

荐读文献

Bayesian Interpretation of the EXCEL Trial and Other Randomized Clinical Trials of Left Main Coronary Artery Revascularization Two-year outcomes of everolimus vs. paclitaxel-eluting stent for the treatment of unprotected left main lesions: a propensity score matching comparison of patients included in the French Left Main Taxus (FLM Taxus) and the LEft MAin Xience (LEMAX) registries Drug-eluting stents in elderly patients with coronary artery disease (SENIOR): a randomised single-blind trial Usefulness of the SYNTAX score II to validate 2-year outcomes in patients with complex coronary artery disease undergoing percutaneous coronary intervention: A large single-center study Percutaneous Coronary Intervention vs Coronary Artery Bypass Grafting in Patients With Left Main Coronary Artery Stenosis A Systematic Review and Meta-analysis What Is the Optimal Revascularization Strategy for Left Main Coronary Stenosis? Why NOBLE and EXCEL Are Consistent With Each Other and With Previous Trials Ten-Year All-Cause Death According to Completeness of Revascularization in Patients With Three-Vessel Disease or Left Main Coronary Artery Disease: Insights From the SYNTAX Extended Survival Study Long-term results after PCI of unprotected distal left main coronary artery stenosis: the Bifurcations Bad Krozingen (BBK)-Left Main Registry Current treatment of significant left main coronary artery disease: A review

Clinical Trial2015 Oct 13;66(15):1643-53.

JOURNAL:J Am Coll Cardiol. Article Link

10-Year Coronary Heart Disease Risk Prediction Using Coronary Artery Calcium and Traditional Risk Factors: Derivation in the MESA (Multi-Ethnic Study of Atherosclerosis) With Validation in the HNR (Heinz Nixdorf Recall) Study and the DHS (Dallas Heart Study)

McClelland RL, Jorgensen NW, Budoff M et al. Keywords: atherosclerosis; coronary disease; epidemiology; risk prediction

ABSTRACT


BACKGROUNDSeveral studies have demonstrated the tremendous potential of using coronary artery calcium (CAC) in addition to traditional risk factors for coronary heart disease (CHD) risk prediction. However, to date, no risk score incorporating CAC has been developed.


OBJECTIVES - The goal of this study was to derive and validate a novel risk score to estimate 10-year CHD risk using CAC and traditional risk factors.

METHODS - Algorithm development was conducted in the MESA (Multi-Ethnic Study of Atherosclerosis), a prospective community-based cohort study of 6,814 participants age 45 to 84 years, who were free of clinical heart disease at baseline and followed for 10 years. MESA is sex balanced and included 39% non-Hispanic whites, 12% Chinese Americans, 28% African Americans, and 22% Hispanic Americans. External validation was conducted in the HNR (Heinz Nixdorf Recall Study) and the DHS (Dallas Heart Study).

RESULTS - Inclusion of CAC in the MESA risk score offered significant improvements in risk prediction (C-statistic 0.80 vs. 0.75; p < 0.0001). External validation in both the HNR and DHS studies provided evidence of very good discrimination and calibration. Harrell's C-statistic was 0.779 in HNR and 0.816 in DHS. Additionally, the difference in estimated 10-year risk between events and nonevents was approximately 8% to 9%, indicating excellent discrimination. Mean calibration, or calibration-in-the-large, was excellent for both studies, with average predicted 10-year risk within one-half of a percent of the observed event rate.

CONCLUSIONS - An accurate estimate of 10-year CHD risk can be obtained using traditional risk factors and CAC. The MESA risk score, which is available online on the MESA web site for easy use, can be used to aid clinicians when communicating risk to patients and when determining risk-based treatment strategies.

Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.