CBS 2019
CBSMD教育中心
English

IVUS Guidance

科研文章

荐读文献

Novel predictors of late lumen enlargement in distal reference segments after successful recanalization of coronary chronic total occlusion Coronary plaque redistribution after stent implantation is determined by lipid composition: A NIRS-IVUS analysis Optical coherence tomography and intravascular ultrasound assessment of the anatomic size and wall thickness of a muscle bridge segment Intravascular ultrasound-guided drug-eluting stent implantation is associated with improved clinical outcomes in patients with unstable angina and complex coronary artery true bifurcation lesions Prognostic Value of Intravascular Ultrasound in Patients With Coronary Artery Disease Comparison of plaque characteristics in narrowings with ST-elevation myocardial infarction (STEMI), non-STEMI/unstable angina pectoris and stable coronary artery disease (from the ADAPT-DES IVUS Substudy) Relation between baseline plaque features and subsequent coronary artery remodeling determined by optical coherence tomography and intravascular ultrasound Assessment of coronary atherosclerosis by IVUS and IVUS-based imaging modalities: progression and regression studies, tissue composition and beyond A Combined Optical Coherence Tomography and Intravascular Ultrasound Study on Plaque Rupture, Plaque Erosion, and Calcified Nodule in Patients With ST-Segment Elevation Myocardial Infarction: Incidence, Morphologic Characteristics, and Outcomes After Percutaneous Coronary Intervention Percutaneous Coronary Intervention for Vulnerable Coronary Atherosclerotic Plaque

LetterVolume 69, Issue 3, May 2017, Pages 407-410

JOURNAL:Indian Heart J. Article Link

Optical coherence tomography is a kid on the block: I would choose intravascular ultrasound

Dash D. Keywords: Percutaneous coronary interventionIntravscular ultrasoundOptical coherence tomographyVulnerable plaqueBiodegradable vascular scaffold

ABSTRACT

Intravascular imaging has improved our understanding of in vivo pathophysiology of coronary artery disease (CAD) and predicted decision-making in percutaneous coronary intervention (PCI). Intravascular ultrasound (IVUS) has emerged as the first clinical imaging method contributing significantly to modern PCI techniques. This modality has outlived many other intravascular techniques 26 years after its inception. It has assisted us in understanding dynamics of atherosclerosis and provides several unique insights into plaque burden, remodeling, and restenosis. It is useful as an imaging endpoint in large progression-regression trial and as workhorse in many catheterization laboratories. IVUS guidance appears to be most beneficial in complex lesion subsets that are being treated with drug-eluting stents. The recent introduction of optical coherence tomography (OCT), a light based imaging technique, has further expanded this field because of its higher resolution and faster image acquisition. The omnipresence of OCT raises the question: Does IVUS have a role in the era of OCT? Whether OCT is superior to IVUS in routine clinical practice? Even if OCT is currently gaining clinical significance in detailed planning of interventional strategies and stent optimization in complex lesion subsets, it is the much younger technique and has to prove its worth. Nevertheless, undoubtedly IVUS plays significant role in studies on coronary atherosclerosis and for guidance of PCI. In fact, both the methods are complementary rather than competitive.