CBS 2019
CBSMD教育中心
English

Transcatheter Aortic Valve Replacement

科研文章

荐读文献

Incidence, predictors, and outcomes associated with acute kidney injury in patients undergoing transcatheter aortic valve replacement: from the BRAVO-3 randomized trial Relationship between B-type natriuretic peptide and invasive haemodynamics in patients with severe aortic valve stenosis Left Ventricular Rapid Pacing Via the Valve Delivery Guidewire in Transcatheter Aortic Valve Replacement Transcatheter Aortic Valve Replacement vs Surgical Replacement in Patients With Pure Aortic Insufficiency Minimizing Permanent Pacemaker Following Repositionable Self-Expanding Transcatheter Aortic Valve Replacement Cardiovascular Magnetic Resonance as a complementary method to Transthoracic Echocardiography for Aortic Valve Area Estimation in patients with Aortic Stenosis: A systematic review and meta-analysis Transcatheter Aortic Valve Replacement During Pregnancy Minimum Core Data Elements for Evaluation of TAVR: A Scientific Statement by PASSION CV, HVC, and TVT Registry Preventing Coronary Obstruction During Transcatheter Aortic Valve Replacement From Computed Tomography to BASILICA Balloon Aortic Valvuloplasty as a Bridge to Aortic Valve Replacement: A Contemporary Nationwide Perspective

Clinical Trial2014 May 8;370(19):1790-8.

JOURNAL:N Engl J Med. Article Link

Transcatheter aortic-valve replacement with a self-expanding prosthesis

Adams DH, Popma JJ, U.S. CoreValve Clinical Investigators. Keywords: self-expanding transcatheter aortic-valve bioprothesis; SAVR; severe aortic stenosis; 1-year outcome

ABSTACT


BACKGROUND - We compared transcatheter aortic-valve replacement (TAVR), using a self-expanding transcatheter aortic-valve bioprosthesis, with surgical aortic-valve replacement in patients with severe aortic stenosis and an increased risk of death during surgery.

 

METHODS - We recruited patients with severe aortic stenosis who were at increased surgical risk as determined by the heart team at each study center. Risk assessment included the Society of Thoracic Surgeons Predictor Risk of Mortality estimate and consideration of other key risk factors. Eligible patients were randomly assigned in a 1:1 ratio to TAVR with the self-expanding transcatheter valve (TAVR group) or to surgical aortic-valve replacement (surgical group). The primary end point was the rate of death from any cause at 1 year, evaluated with the use of both noninferiority and superiority testing.

 

RESULTS - A total of 795 patients underwent randomization at 45 centers in the United States. In the as-treated analysis, the rate of death from any cause at 1 year was significantly lower in the TAVR group than in the surgical group (14.2% vs. 19.1%), with an absolute reduction in risk of 4.9 percentage points (upper boundary of the 95% confidence interval, 0.4; P<0.001 for noninferiority; P = 0.04 for superiority). The results were similar in the intention-to-treat analysis. In a hierarchical testing procedure, TAVR was noninferior with respect to echocardiographic indexes of valve stenosis, functional status, and quality of life. Exploratory analyses suggested a reduction in the rate of major adverse cardiovascular and cerebrovascular events and no increase in the risk of stroke.

 

CONCLUSIONS - In patients with severe aortic stenosis who are at increased surgical risk, TAVR with a self-expanding transcatheter aortic-valve bioprosthesis was associated with a significantly higher rate of survival at 1 year than surgical aortic-valve replacement. (Funded by Medtronic; U.S. CoreValve High Risk Study ClinicalTrials.gov number, NCT01240902.)