CBS 2019
CBSMD教育中心
English

Transcatheter Aortic Valve Replacement

科研文章

荐读文献

Transcatheter aortic-valve replacement with a self-expanding prosthesis 2020 ACC/AHA Guideline for the Management of Patients With Valvular Heart Disease: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines Transcatheter Aortic Valve Replacement in Patients With Multivalvular Heart Disease Predictors and Clinical Outcomes of Next-Day Discharge After Minimalist Transfemoral Transcatheter Aortic Valve Replacement Conscious Sedation Versus General Anesthesia for Transcatheter Aortic Valve Replacement: Variation in Practice and Outcomes Long-Term Durability of Transcatheter Heart Valves: Insights From Bench Testing to 25 Years Contemporary real-world outcomes of surgical aortic valve replacement in 141,905 low-risk, intermediate-risk, and high-risk patients Early Surgery or Conservative Care for Asymptomatic Aortic Stenosis Transcatheter versus Surgical Aortic Valve Replacement in Patients with Prior Cardiac Surgery in the Randomized PARTNER 2A Trial Transcatheter Aortic Valve Replacement: Role of Multimodality Imaging in Common and Complex Clinical Scenarios

Review ArticleVolume 74, Issue 12, September 2019

JOURNAL:J Am Coll Cardiol. Article Link

Transcatheter Versus Surgical Aortic Valve Replacement in Low-Risk Patients

DKolte, GJ Vlahakes, IF Palacios et al. Keywords: death; low risk; surgical aortic valve replacement; transcatheter aortic valve implantation; transcatheter aortic valve replacement

ABSTRACT


BACKGROUND- Transcatheter aortic valve replacement (TAVR) has emerged as a safe and effective therapeutic option for patients with severe aortic stenosis (AS) who are at prohibitive, high, or intermediate risk for surgical aortic valve replacement (SAVR). However, in low-risk patients, SAVR remains the standard therapy in current clinical practice.

 

OBJECTIVES - This study sought to perform a meta-analysis of randomized controlled trials (RCTs) comparing TAVR versus SAVR in low-risk patients.

 

METHODS - Electronic databases were searched from inception to March 20, 2019. RCTs comparing TAVR versus SAVR in low-risk patients (Society of Thoracic Surgeons Predicted Risk of Mortality [STS-PROM] score <4%) were included. Primary outcome was all-cause death at 1 year. Random-effects models were used to calculate pooled risk ratio (RR) and corresponding 95% confidence interval (CI).

 

RESULTS- The meta-analysis included 4 RCTs that randomized 2,887 patients (1,497 to TAVR and 1,390 to SAVR). The mean age of patients was 75.4 years, and the mean STS-PROM score was 2.3%. Compared with SAVR, TAVR was associated with significantly lower risk of all-cause death (2.1% vs. 3.5%; RR: 0.61; 95% CI: 0.39 to 0.96; p = 0.03; I2 = 0%) and cardiovascular death (1.6% vs. 2.9%; RR: 0.55; 95% CI: 0.33 to 0.90; p = 0.02; I2 = 0%) at 1 year. Rates of new/worsening atrial fibrillation, life-threatening/disabling bleeding, and acute kidney injury stage 2/3 were lower, whereas those of permanent pacemaker implantation and moderate/severe paravalvular leak were higher after TAVR versus SAVR. There were no significant differences between TAVR versus SAVR for major vascular complications, endocarditis, aortic valve re-intervention, and New York Heart Association functional class II.

 

CONCLUSIONS- In this meta-analysis of RCTs comparing TAVR versus SAVR in low-risk patients, TAVR was associated with significantly lower risk of all-cause death and cardiovascular death at 1 year. These findings suggest that TAVR may be the preferred option over SAVR in low-risk patients with severe AS who are candidates for bioprosthetic AVR.