CBS 2019
CBSMD教育中心
English

Transcatheter Aortic Valve Replacement

科研文章

荐读文献

Transcatheter Aortic-Valve Replacement with a Self-Expanding Valve in Low-Risk Patients Coronary Protection to Prevent Coronary Obstruction During TAVR: A Multicenter International Registry Edoxaban versus Vitamin K Antagonist for Atrial Fibrillation after TAVR Predictors of high residual gradient after transcatheter aortic valve replacement in bicuspid aortic valve stenosis Online Quantitative Aortographic Assessment of Aortic Regurgitation After TAVR: Results of the OVAL Study Transcatheter Versus Surgical Aortic Valve Replacement in Patients With Severe Aortic Valve Stenosis: 1-Year Results From the All-Comers NOTION Randomized Clinical Trial Ascending Aortic Length and Risk of Aortic Adverse Events: The Neglected Dimension Low Transvalvular Flow Rate Predicts Mortality in Patients With Low-Gradient Aortic Stenosis Following Aortic Valve Intervention The Year in Cardiovascular Medicine 2020: Valvular Heart Disease: Discussing the Year in Cardiovascular Medicine for 2020 in the field of valvular heart disease is Professor Helmut Baumgartner and Dr Javier Bermejo. Mark Nicholls reports Temporal Trends in Transcatheter Aortic Valve Replacement in France: FRANCE 2 to FRANCE TAVI

Original Research2020 Dec 16;jeaa310.

JOURNAL:Eur Heart J Cardiovasc Imaging. Article Link

Computed tomography angiography-derived extracellular volume fraction predicts early recovery of left ventricular systolic function after transcatheter aortic valve replacement

D Han, B Tamarappoo, E Klein et al. Keywords: AS; computed tomography; extracellular volume; left ventricular function; myocardial fibrosis; TAVR

ABSTRACT

AIMS - Recovery of left ventricular ejection fraction (LVEF) after aortic valve replacement has prognostic importance in patients with aortic stenosis (AS). The mechanism by which myocardial fibrosis impacts LVEF recovery in AS is not well characterized. We sought to evaluate the predictive value of extracellular volume fraction (ECV) quantified by cardiac CT angiography (CTA) for LVEF recovery in patients with AS after transcatheter aortic valve replacement (TAVR).


METHODS AND RESULTS - In 109 pre-TAVR patients with LVEF <50% at baseline echocardiography, CTA-derived ECV was calculated as the ratio of change in CT attenuation of the myocardium and the left ventricular (LV) blood pool before and after contrast administration. Early LVEF recovery was defined as an absolute increase of 10% in LVEF measured by post-TAVR follow-up echocardiography within 6 months of the procedure. Early LVEF recovery was observed in 39 (36%) patients. The absolute increase in LVEF was 17.6 ± 8.8% in the LVEF recovery group and 0.9 ± 5.9% in the no LVEF recovery group (P < 0.001). ECV was significantly lower in patients with LVEF recovery compared with those without LVEF recovery (29.4 ± 6.1% vs. 33.2 ± 7.7%, respectively, P = 0.009). In multivariable analysis, mean pressure gradient across the aortic valve [odds ratio (OR): 1.07, 95% confidence interval (CI): 1.031.11, P: 0.001], LV end-diastolic volume (OR: 0.99, 95% CI: 0.980.99, P: 0.035), and ECV (OR: 0.92, 95% CI: 0.860.99, P: 0.018) were independent predictors of early LVEF recovery.


CONCLUSION - Increased myocardial ECV on CTA is associated with impaired LVEF recovery post-TAVR in severe AS patients with impaired LV systolic function.