CBS 2019
CBSMD教育中心
中 文

科学研究

Abstract

Recommended Article

Assessment of coronary atherosclerosis by IVUS and IVUS-based imaging modalities: progression and regression studies, tissue composition and beyond Nuclear Imaging of the Cardiac Sympathetic Nervous System: A Disease-Specific Interpretation in Heart Failure Derivation, Validation, and Prognostic Utility of a Prediction Rule for Nonresponse to Clopidogrel: The ABCD-GENE Score Fluid Volume Overload and Congestion in Heart Failure: Time to Reconsider Pathophysiology and How Volume Is Assessed Economic and Quality-of-Life Outcomes of Natriuretic Peptide–Guided Therapy for Heart Failure Intravascular ultrasound predictors for edge restenosis after newer generation drug-eluting stent implantation Clinical impact of intravascular ultrasound-guided chronic total occlusion intervention with zotarolimus-eluting versus biolimus-eluting stent implantation: randomized study The Future of Biomarker-Guided Therapy for Heart Failure After the Guiding Evidence-Based Therapy Using Biomarker Intensified Treatment in Heart Failure (GUIDE-IT) Study

Original ResearchVolume 75, Issue 7, February 2020

JOURNAL:J Am Coll Cardiol. Article Link

Long-Term Exposure to Fine Particulate Matter and Cardiovascular Disease in China

FC Liang, FC Liu, DF Gu et al. Keywords: cardiovascular diseases; cohort study; incidence and mortality; long-term exposure; satellite-based PM2.5 estimation

ABSTRACT


BACKGROUND - Evidence of the effects of long-term fine particulate matter (PM2.5) exposure on cardiovascular diseases (CVDs) is rare for populations exposed to high levels of PM2.5 in China and in other countries with similarly high levels.


OBJECTIVES - The aim of this study was to assess the CVD risks associated with long-term exposure to PM2.5 in China.


METHODS - A nationwide cohort study, China-PAR (Prediction for Atherosclerotic Cardiovascular Disease Risk in China), was used, with 116,972 adults without CVD in 2000 being included. Participants were followed until 2015. Satellite-based PM2.5 concentrations at 1-km spatial resolution during the study period were used for exposure assessment. A Cox proportional hazards model with time-varying exposures was used to estimate the CVD risks associated with PM2.5 exposure, adjusting for individual risk factors.


RESULTS - Annual mean concentrations of PM2.5 at the China-PAR sites ranged from 25.5 to 114.0 μg/m3. For each 10 μg/m3 increase in PM2.5 exposures, the multivariate-adjusted hazard ratio was 1.251 (95% confidence interval: 1.220 to 1.283) for CVD incidence and 1.164 (95% confidence interval: 1.117 to 1.213) for CVD mortality. The slopes of concentration-response functions of PM2.5 exposure and CVD risks were steeper at high PM2.5 levels. In addition, older residents, rural residents, and never smokers were more prone to adverse effects of PM2.5 exposure.


CONCLUSIONS  -  This study provides evidence that elevated long-term PM2.5 exposures lead to increased CVD risk in China. The effects are more pronounced at higher PM2.5 levels. These findings expand the current knowledge on adverse health effects of severe air pollution and highlight the potential cardiovascular benefits of air quality improvement in China and other low- and middle-income countries.