CBS 2019
CBSMD教育中心
中 文

科学研究

Abstract

Recommended Article

Sex Differences in Cardiovascular Pathophysiology: Why Women Are Overrepresented in Heart Failure With Preserved Ejection Fraction Initial Invasive or Conservative Strategy for Stable Coronary Disease Risk of Mortality Following Catheter Ablation of Atrial Fibrillation Efficacy and Safety of Dapagliflozin in Heart Failure With Reduced Ejection Fraction According to Age: Insights From DAPA-HF The relationship between attenuated plaque identified by intravascular ultrasound and no-reflow after stenting in acute myocardial infarction: the HORIZONS-AMI (Harmonizing Outcomes With Revascularization and Stents in Acute Myocardial Infarction) trial Intravascular Ultrasound to Guide Left Main Stem Intervention: A Sub-Study of the NOBLE Trial Temporal Trends in Transcatheter Aortic Valve Replacement in France: FRANCE 2 to FRANCE TAVI How to diagnose heart failure with preserved ejection fraction: the HFA–PEFF diagnostic algorithm: a consensus recommendation from the Heart Failure Association (HFA) of the European Society of Cardiology (ESC)

Original ResearchN Engl J Med 2020; 382:1208-1218

JOURNAL:N Engl J Med. Article Link

Polymer-based or Polymer-free Stents in Patients at High Bleeding Risk

S Windecker, A Latib, the ONYX ONE Investigators et al. Keywords: polymer-based vs. polymer-free stents

ABSTRACT


BACKGROUND - Polymer-free drug-coated stents provide superior clinical outcomes to bare-metal stents in patients at high bleeding risk who undergo percutaneous coronary intervention (PCI) and are treated with 1 month of dual antiplatelet therapy. Data on the use of polymer-based drug-eluting stents, as compared with polymer-free drug-coated stents, in such patients are limited.

 

METHODS - In an international, randomized, single-blind trial, we compared polymer-based zotarolimus-eluting stents with polymer-free umirolimuscoated stents in patients at high bleeding risk. After PCI, patients were treated with 1 month of dual antiplatelet therapy, followed by single antiplatelet therapy. The primary outcome was a safety composite of death from cardiac causes, myocardial infarction, or stent thrombosis at 1 year. The principal secondary outcome was target-lesion failure, an effectiveness composite of death from cardiac causes, target-vessel myocardial infarction, or clinically indicated target-lesion revascularization. Both outcomes were powered for noninferiority.

 

RESULTS - A total of 1996 patients at high bleeding risk were randomly assigned in a 1:1 ratio to receive zotarolimus-eluting stents (1003 patients) or polymer-free drug-coated stents (993 patients). At 1 year, the primary outcome was observed in 169 of 988 patients (17.1%) in the zotarolimus-eluting stent group and in 164 of 969 (16.9%) in the polymer-free drug-coated stent group (risk difference, 0.2 percentage points; upper boundary of the one-sided 97.5% confidence interval [CI], 3.5; noninferiority margin, 4.1; P=0.01 for noninferiority). The principal secondary outcome was observed in 174 patients (17.6%) in the zotarolimus-eluting stent group and in 169 (17.4%) in the polymer-free drug-coated stent group (risk difference, 0.2 percentage points; upper boundary of the one-sided 97.5% CI, 3.5; noninferiority margin, 4.4; P=0.007 for noninferiority).

 

CONCLUSIONS - Among patients at high bleeding risk who received 1 month of dual antiplatelet therapy after PCI, use of polymer-based zotarolimus-eluting stents was noninferior to use of polymer-free drug-coated stents with regard to safety and effectiveness composite outcomes. (Funded by Medtronic; ONYX ONE ClinicalTrials.gov number, NCT03344653)