CBS 2019
CBSMD教育中心
中 文

科学研究

Abstract

Recommended Article

Benefits with drug-coated balloon as compared to a conventional revascularization strategy for the treatment of coronary and non-coronary arterial disease: a comprehensive meta-analysis of 45 randomized trials Optical Coherence Tomography to Assess Proximal Side Optimization Technique in Crush Stenting Thrombotic Risk and Antithrombotic Strategies After Transcatheter Mitral Valve Replacement Italian Society of Interventional Cardiology (GIse) Registry Of Transcatheter Treatment of Mitral Valve RegurgitaTiOn (GIOTTO): Impact of Valve Disease Etiology and Residual Mitral Regurgitation after MitraClip Implantation Initial experience with percutaneous mitral valve repair in patients with cardiac amyloidosis Transcatheter Interventions for Tricuspid Valve Disease: What to Do and Who to Do it On The Tricuspid Annular Plane Systolic Excursion to Systolic Pulmonary Artery Pressure Index: Association With All-Cause Mortality in Patients With Moderate or Severe Tricuspid Regurgitation Five-Year Clinical Outcomes After Drug-Eluting Stent Implantation Following Rotational Atherectomy for Heavily Calcified Lesions

Review Article2018 Jan;33(1):1-10.

JOURNAL:Cardiovasc Interv Ther. Article Link

Current clinical applications of coronary optical coherence tomography

Kume T, Uemura S. Keywords: Coronary intervention; Imaging; Optical coherence tomography; Thrombus; Vulnerable plaque

ABSTRACT


Optical coherence tomography (OCT) is an intra-coronary diagnostic technique that provides detailed imagings of blood vessels in the current cardiac catheterization laboratory. The higher resolution of OCT often provides superior delineation of each structure compared with intravascular ultrasound (IVUS), and it can reliably visualize the microstructure of normal and diseased arteries. The capabilities of OCT are well suited for the identification of calcified plaque and neointima formation after stent implantation. It has been reported that OCT-guided percutaneous coronary intervention (PCI) resulted in equivalent clinical and angiographic outcomes in comparison with IVUS-guided PCI. Recently, the three-dimensional reconstruction of OCT and a real-time point-to-point correspondence between coronary angiographic and OCT/OFDI images have been developed and provide useful information to PCI operators. The unique capabilities of OCT as an investigational tool for high-risk lesions will serve the cardiology community well, as it moves us toward a better understanding of atherosclerotic plaque. In addition, because of the development of new OCT technology, OCT has become a notable catheter-based imaging technology that can provide practical guidance for PCI in clinical settings.