CBS 2019
CBSMD教育中心
中 文

科学研究

Abstract

Recommended Article

Changes in One-Year Mortality in Elderly Patients Admitted with Acute Myocardial Infarction in Relation with Early Management Lack of Association Between Heart Failure and Incident Cancer Stent fracture is associated with a higher mortality in patients with type-2 diabetes treated by implantation of a second-generation drug-eluting stent A sirolimus-eluting bioabsorbable polymer-coated stent (MiStent) versus an everolimus-eluting durable polymer stent (Xience) after percutaneous coronary intervention (DESSOLVE III): a randomised, single-blind, multicentre, non-inferiority, phase 3 trial New technologies for intensive prevention programs after myocardial infarction: rationale and design of the NET-IPP trial Defining Staged Procedures for Percutaneous Coronary Intervention Trials A Guidance Document Cardiac Sympathetic Denervation for Refractory Ventricular Arrhythmias Oxidative Stress and Cardiovascular Risk: Obesity, Diabetes, Smoking, and Pollution: Part 3 of a 3-Part Series

Review Article2018 Jan;33(1):1-10.

JOURNAL:Cardiovasc Interv Ther. Article Link

Current clinical applications of coronary optical coherence tomography

Kume T, Uemura S. Keywords: Coronary intervention; Imaging; Optical coherence tomography; Thrombus; Vulnerable plaque

ABSTRACT


Optical coherence tomography (OCT) is an intra-coronary diagnostic technique that provides detailed imagings of blood vessels in the current cardiac catheterization laboratory. The higher resolution of OCT often provides superior delineation of each structure compared with intravascular ultrasound (IVUS), and it can reliably visualize the microstructure of normal and diseased arteries. The capabilities of OCT are well suited for the identification of calcified plaque and neointima formation after stent implantation. It has been reported that OCT-guided percutaneous coronary intervention (PCI) resulted in equivalent clinical and angiographic outcomes in comparison with IVUS-guided PCI. Recently, the three-dimensional reconstruction of OCT and a real-time point-to-point correspondence between coronary angiographic and OCT/OFDI images have been developed and provide useful information to PCI operators. The unique capabilities of OCT as an investigational tool for high-risk lesions will serve the cardiology community well, as it moves us toward a better understanding of atherosclerotic plaque. In addition, because of the development of new OCT technology, OCT has become a notable catheter-based imaging technology that can provide practical guidance for PCI in clinical settings.