CBS 2019
CBSMD教育中心
中 文

科学研究

Abstract

Recommended Article

Anatomical and Functional Computed Tomography for Diagnosing Hemodynamically Significant Coronary Artery Disease: A Meta-Analysis Technical aspects of the culotte technique The Relation Between Optical Coherence Tomography-Detected Layered Pattern and Acute Side Branch Occlusion After Provisional Stenting of Coronary Bifurcation Lesions Clinical use of intracoronary imaging. Part 1: guidance and optimization of coronary interventions. An expert consensus document of the European Association of Percutaneous Cardiovascular Interventions: Endorsed by the Chinese Society of Cardiology Spontaneous Coronary Artery Dissection: Pathophysiological Insights From Optical Coherence Tomography Double-Kiss-Crush Bifurcation Stenting: Step-by-Step Troubleshooting Japan-United States of America Harmonized Assessment by Randomized Multicentre Study of OrbusNEich's Combo StEnt (Japan-USA HARMONEE) study: primary results of the pivotal registration study of combined endothelial progenitor cell capture and drug-eluting stent in patients with ischaemic coronary disease and non-ST-elevation acute coronary syndrome Noninvasive Screening for Pulmonary Hypertension by Exercise Testing in Congenital Heart Disease

Original Research2021 May 21;ezab217.

JOURNAL:Eur J Cardiothorac Surg. Article Link

Cardiac surgery following transcatheter aortic valve replacement

S Saha, S Peterss, C Mueller et al. Keywords: endocarditis; structural valve disease; TAVR; SAVR

ABSTRACT

OBJECTIVES - The objective of this study was to retrospectively analyse surgical outcomes of patients undergoing secondary cardiac surgery after initial transcatheter aortic valve replacement (TAVR).

METHODS - Between December 2012 and February 2020, a total of 41 consecutive patients underwent cardiac surgery after a TAVR procedure at our institution. Patients who underwent emergency operations due to periprocedural complications such as ventricular rupture and TAVR dislocation were excluded from this study (n = 12). Thus, 29 patients were included in the analysis. Data are presented as medians (25th-75th quartiles) or as absolute numbers (percentages).

RESULTS - The median age was 76 years (68-80); 58.6% were men. The median time to a secondary conventional procedure was 23 months (8-40), with 8 patients requiring surgical intervention within the first year post TAVR. The indications for secondary conventional procedures were prosthesis endocarditis (n = 15), prosthesis degeneration or dysfunction (n = 7) and progression of valvular, aortic or coronary artery disease (n = 7). Surgical redo aortic valve replacement was performed in 24 patients (82.8%). No complications involving the aortic root or the aortomitral continuity were observed. The operative mortality was 10.3%. Extracorporeal life support was required in 3 patients (10.3%) for a median duration of 3 days (3-3 days). No adverse cerebrovascular events were observed postoperatively. Postoperatively, 4 patients (13.8%) required a pacemaker and 7 patients (24.1%) required renal replacement therapy. Overall survival at 1 year was 83.0%.

CONCLUSIONS - Conventional cardiac surgical procedures following TAVR are feasible with reasonable results and a low complication rate.