CBS 2019
CBSMD教育中心
中 文

科学研究

Abstract

Recommended Article

Prognostic impact of non-culprit chronic total occlusions in infarct-related cardiogenic shock: results of the randomised IABP-SHOCK II trial One or two stents for the distal Left Main bifurcation The DK crush V study - The DK crush V study Good response to tolvaptan shortens hospitalization in patients with congestive heart failure Risk Stratification for Patients in Cardiogenic Shock After Acute Myocardial Infarction Cardiac Implantable Electronic Devices in Patients With Left Ventricular Assist Systems Predicting the 10-Year Risks of Atherosclerotic Cardiovascular Disease in Chinese Population: The China-PAR Project (Prediction for ASCVD Risk in China) Non-eligibility for reperfusion therapy in patients presenting with ST-segment elevation myocardial infarction: Contemporary insights from the National Cardiovascular Data Registry (NCDR) The Wait for High-Sensitivity Troponin Is Over—Proceed Cautiously

Review Article2017 Aug 1;70(5):590-606.

JOURNAL:J Am Coll Cardiol. Article Link

Translational Perspective on Epigenetics in Cardiovascular Disease

van der Harst P, de Windt LJ, Chambers JC Keywords: EWAS; HAT; HDAC; RNA; histones; methylation

ABSTRACT

A plethora of environmental and behavioral factors interact, resulting in changes in gene expression and providing a basis for the development and progression of cardiovascular diseases. Heterogeneity in gene expression responses among cells and individuals involves epigenetic mechanisms. Advancing technology allowing genome-scale interrogation of epigenetic marks provides a rapidly expanding view of the complexity and diversity of the epigenome. In this review, the authors discuss the expanding landscape of epigenetic modifications and highlight their importance for future understanding of disease. The epigenome provides a mechanistic link between environmental exposures and gene expression profiles ultimately leading to disease. The authors discuss the current evidence for transgenerational epigenetic inheritance and summarize the data linking epigenetics to cardiovascular disease. Furthermore, the potential targets provided by the epigenome for the development of future diagnostics, preventive strategies, and therapy for cardiovascular disease are reviewed. Finally, the authors provide some suggestions for future directions.