CBS 2019
CBSMD教育中心
中 文

科学研究

Abstract

Recommended Article

Polymer-based or Polymer-free Stents in Patients at High Bleeding Risk Impact of SYNTAX Score on 10-Year Outcomes After Revascularization for Left Main Coronary Artery Disease Inhibition of Platelet Aggregation After Coronary Stenting in Patients Receiving Oral Anticoagulation Frailty in Older Adults Undergoing Aortic Valve Replacement: The FRAILTY-AVR Study One-year outcome of a prospective trial stopping dual antiplatelet therapy at 3 months after everolimus-eluting cobalt-chromium stent implantation: ShortT and OPtimal duration of Dual AntiPlatelet Therapy after everolimus-eluting cobalt-chromium stent (STOPDAPT) trial Safety and efficacy of the bioabsorbable polymer everolimus-eluting stent versus durable polymer drug-eluting stents in high-risk patients undergoing PCI: TWILIGHT-SYNERGY In vitro flow and optical coherence tomography comparison of two bailout techniques after failed provisional stenting for bifurcation percutaneous coronary interventions 2019 AHA/ACC Clinical Performance and Quality Measures for Adults With High Blood Pressure: A Report of the American College of Cardiology/American Heart Association Task Force on Performance Measures

JOURNAL:American College of Cardiology Article Link

心脏成像电离辐射专家共识

Troy M LaBounty, M.D., FACC

  1. 1.    Typical effective radiation doses are provided for coronary computed tomography angiography, calcium score, single-photon emission computed tomography (SPECT), PET, diagnostic fluoroscopy, and interventional fluoroscopy studies. Many of these have wide ranges of typical effective doses (e.g., SPECT can range from 2.3 to 23 mSv).
  2. 2.    Population exposure to medical radiation has grown rapidly and was reported as 3.2 mSv/year when last estimated in 2006. This exceeds the natural background radiation that averages 3.0 mSv/year in the United States.
  3. 3.   Physicians performing interventional cardiovascular procedures can be exposed to significant radiation, which can exceed 100 uSv for a single procedure. An active interventional cardiologist can be expected to receive as much as 10 mSv/year of radiation in addition to background radiation.
  4. 4.    Doses over 100 mSv are associated with increased cancer risk in adults, with smaller doses associated with risk in children. Some patients and some physicians may be exposed to lifetime exposures that exceed this threshold.
  5. 5.    Effective radiation dose is estimated by measuring the radiation dose to specific tissues and organs, and adjusting this using a weighting factor that incorporates the sensitivity of each tissue and organ to cancer risk.
  6. 6.    Radiation risks can include tissue reactions due to cell injury (e.g., skin injuries), cancer, and mutations to germ cells that may be transmitted to offspring.
  7. 7.    The most accepted model of cancer risk suggests a linear relationship between dose and cancer risk, with no dose threshold under which there is no risk.
  8. 8.   Increased cancer risk is associated with higher doses, exposure of radiation-sensitive organs, female gender, and younger age. The predicted lifetime risk of cancer from exposure to 100 mSv of radiation is estimated at 2% for males and 4% for females under 15 years of age, and this risk decreases with greater age.
  9. 9.    Recommended radiation limits for workers exposed to occupational radiation are 20 mSv/year averaged over 5 years.
  10. 10.    The ALARA concept is that radiation dose should always be “as low as reasonably achievable.