CBS 2019
CBSMD教育中心
中 文

科学研究

Abstract

Recommended Article

Defining High Bleeding Risk in Patients Undergoing Percutaneous Coronary Intervention: A Consensus Document From the Academic Research Consortium for High Bleeding Risk Transverse partial stent ablation with rotational atherectomy for suboptimal culotte technique in left main stem bifurcation Use of High-Risk Coronary Atherosclerotic Plaque Detection for Risk Stratification of Patients With Stable Chest Pain: A Secondary Analysis of the PROMISE Randomized Clinical Trial Update on Prevention of Cardiovascular Disease in Adults With Type 2 Diabetes Mellitus in Light of Recent Evidence: A Scientific Statement From the American Heart Association and the American Diabetes Association Nonproportional Hazards for Time-to-Event Outcomes in Clinical Trials: JACC Review Topic of the Week Sudden Cardiac Arrest Survivorship: A Scientific Statement From the American Heart Association Multimodality imaging in cardiology: a statement on behalf of the Task Force on Multimodality Imaging of the European Association of Cardiovascular Imaging Quantitative Assessment of Coronary Microvascular Function: Dynamic Single-Photon Emission Computed Tomography, Positron Emission Tomography, Ultrasound, Computed Tomography, and Magnetic Resonance Imaging

JOURNAL:American College of Cardiology Article Link

心脏成像电离辐射专家共识

Troy M LaBounty, M.D., FACC

  1. 1.    Typical effective radiation doses are provided for coronary computed tomography angiography, calcium score, single-photon emission computed tomography (SPECT), PET, diagnostic fluoroscopy, and interventional fluoroscopy studies. Many of these have wide ranges of typical effective doses (e.g., SPECT can range from 2.3 to 23 mSv).
  2. 2.    Population exposure to medical radiation has grown rapidly and was reported as 3.2 mSv/year when last estimated in 2006. This exceeds the natural background radiation that averages 3.0 mSv/year in the United States.
  3. 3.   Physicians performing interventional cardiovascular procedures can be exposed to significant radiation, which can exceed 100 uSv for a single procedure. An active interventional cardiologist can be expected to receive as much as 10 mSv/year of radiation in addition to background radiation.
  4. 4.    Doses over 100 mSv are associated with increased cancer risk in adults, with smaller doses associated with risk in children. Some patients and some physicians may be exposed to lifetime exposures that exceed this threshold.
  5. 5.    Effective radiation dose is estimated by measuring the radiation dose to specific tissues and organs, and adjusting this using a weighting factor that incorporates the sensitivity of each tissue and organ to cancer risk.
  6. 6.    Radiation risks can include tissue reactions due to cell injury (e.g., skin injuries), cancer, and mutations to germ cells that may be transmitted to offspring.
  7. 7.    The most accepted model of cancer risk suggests a linear relationship between dose and cancer risk, with no dose threshold under which there is no risk.
  8. 8.   Increased cancer risk is associated with higher doses, exposure of radiation-sensitive organs, female gender, and younger age. The predicted lifetime risk of cancer from exposure to 100 mSv of radiation is estimated at 2% for males and 4% for females under 15 years of age, and this risk decreases with greater age.
  9. 9.    Recommended radiation limits for workers exposed to occupational radiation are 20 mSv/year averaged over 5 years.
  10. 10.    The ALARA concept is that radiation dose should always be “as low as reasonably achievable.