CBS 2019
CBSMD教育中心
中 文

Stenting Left Main

Abstract

Recommended Article

Why NOBLE and EXCEL Are Consistent With Each Other and With Previous Trials Ten-Year All-Cause Death According to Completeness of Revascularization in Patients With Three-Vessel Disease or Left Main Coronary Artery Disease: Insights From the SYNTAX Extended Survival Study Long-term results after PCI of unprotected distal left main coronary artery stenosis: the Bifurcations Bad Krozingen (BBK)-Left Main Registry Current treatment of significant left main coronary artery disease: A review Surgical ineligibility and mortality among patients with unprotected left main or multivessel coronary artery disease undergoing percutaneous coronary intervention Patient selection and percutaneous technique of unprotected left main revascularization Comparison of Outcomes of Percutaneous Coronary Intervention on Native Coronary Arteries Versus on Saphenous Venous Aorta Coronary Conduits in Patients With Low Left Ventricular Ejection Fraction and Impella Device Implantation Achieved or Attempted (from the PROTECT II Randomized Trial and the cVAD Registry) Percutaneous Coronary Intervention Versus Coronary Artery Bypass Grafting in Patients With Left Main and Multivessel Coronary Artery Disease: Do We Have the Evidence?

Clinical TrialOctober 2017; Vol 120, Issue 8, P1285–1292

JOURNAL:Am J Cardiol. Article Link

Incidence, Treatment, and Outcomes of Coronary Perforation During Chronic Total Occlusion Percutaneous Coronary Intervention

Danek BA, Karatasakis A, Brilakis ES et al. Keywords: Coronary Perforation; Chronic Total Occlusion; Percutaneous Coronary Intervention

ABSTRACT

Coronary perforation is a potential complication of chronic total occlusion (CTO) percutaneous coronary intervention (PCI). We analyzed 2,097 CTO PCIs performed in 2,049 patients from 2012 to 2017. Patient age was 65 ± 10 years, 85% were men, and 36% had prior coronary artery bypass graft surgery. Technical and procedural success were 88% and 87%, respectively. A major periprocedural adverse cardiovascular event occurred in 2.6%. Coronary perforation occurred in 85 patients (4.1%); The frequency of Ellis class 1, 2, and 3 perforations was 21%, 26%, and 52%, respectively. Perforation occurred more frequently in older patients and those with previous coronary artery bypass graft surgery (61% vs 35%, p < 0.001). Cases with perforation were angiographically more complex (Multicenter CTO Registry in Japan score 3.0 ± 1.2 vs 2.5 ± 1.3, p < 0.001). Twelve patients (14%) with perforation experienced tamponade requiring pericardiocentesis. Patient age, previous PCI, right coronary artery target CTO, blunt or no stump, use of antegrade dissection re-entry, and the retrograde approach were associated with perforation. Adjusted odds ratio for periprocedural major periprocedural adverse cardiovascular events among patients with perforation was 15.04 (95% confidence interval 7.35 to 30.18). In conclusion, perforation occurs relatively infrequently in contemporary CTO PCI performed by experienced operators and is associated with baseline patient characteristics and angiographic complexity necessitating use of advanced crossing techniques. In most cases, perforations do not result in tamponade requiring pericardiocentesis, but they are associated with reduced technical and procedural success, higher periprocedural major adverse events, and reduced procedural efficiency.