CBS 2019
CBSMD教育中心
中 文

Stenting Left Main

Abstract

Recommended Article

Percutaneous Coronary Intervention Versus Coronary Artery Bypass Grafting in Patients With Left Main and Multivessel Coronary Artery Disease: Do We Have the Evidence? Two-year outcomes following unprotected left main stenting with first vs new-generation drug-eluting stents: the FINE registry. EuroIntervention. Stroke Rates Following Surgical Versus Percutaneous Coronary Revascularization Management of left main disease: an update Incidence and Management of Restenosis After Treatment of Unprotected Left Main Disease With Second-Generation Drug-Eluting Stents (from Failure in Left Main Study With 2nd Generation Stents-Cardiogroup III Study) Differential prognostic impact of treatment strategy among patients with left main versus non-left main bifurcation lesions undergoing percutaneous coronary intervention: results from the COBIS (Coronary Bifurcation Stenting) Registry II Everolimus-eluting stent implantation for unprotected left main coronary artery stenosis. The PRECOMBAT-2 (Premier of Randomized Comparison of Bypass Surgery versus Angioplasty Using Sirolimus-Eluting Stent in Patients with Left Main Coronary Artery Disease) study Long-Term Outcomes of Different Two-Stent Techniques With Second-Generation Drug-Eluting Stents for Unprotected Left Main Bifurcation Disease: Insights From the FAILS-2 Study

Original ResearchVolume 75, Issue 12, March 2020

JOURNAL:J Am Coll Cardiol. Article Link

2-Year Outcomes After Stenting of Lipid-Rich and Nonrich Coronary Plaques

MHwa Yamamoto, A Maehara, GW Stone et al. Keywords: IVUS; lipid-rich plaque; near-infrared spectroscopy; stent

ABSTRACT


BACKGROUND- Autopsy studies suggest that implanting stents in lipid-rich plaque (LRP) may be associated with adverse outcomes.

 

OBJECTIVES- The purpose of this study was to evaluate the association between LRP detected by near-infrared spectroscopy (NIRS) and clinical outcomes in patients with coronary artery disease treated with contemporary drug-eluting stents.

 

METHODS- In this prospective, multicenter registry, NIRS was performed in patients undergoing coronary angiography and possible percutaneous coronary intervention (PCI). Lipid core burden index (LCBI) was calculated as the fraction of pixels with the probability of LRP >0.6 within a region of interest. MaxLCBI4mm was defined as the maximum LCBI within any 4-mm-long segment. Major adverse cardiac events (MACE) included cardiac death, myocardial infarction, definite or probable stent thrombosis, or unplanned revascularization or rehospitalization for progressive angina or unstable angina. Events were subcategorized as culprit (treated) lesionrelated, nonculprit (untreated) lesionrelated, or indeterminate.

 

RESULTS- Among 1,999 patients who were enrolled in the COLOR (Chemometric Observations of Lipid Core Plaques of Interest in Native Coronary Arteries Registry), PCI was performed in 1,621 patients and MACE occurred in 18.0% of patients, of which 8.3% were culprit lesionrelated, 10.7% were nonculprit lesionrelated, and 3.1% were indeterminate during 2-year follow-up. Complications from NIRS imaging occurred in 9 patients (0.45%), which resulted in 1 peri-procedural myocardial infarction and 1 emergent coronary bypass. Pre-PCI NIRS imaging was obtained in 1,189 patients, and the 2-year rate of culprit lesionrelated MACE was not significantly associated with maxLCBI4mm (hazard ratio of maxLCBI4mm per 100: 1.06; 95% confidence interval: 0.96 to 1.17; p = 0.28) after adjusting clinical and procedural factors.

 

CONCLUSIONS- Following PCI with contemporary drug-eluting stents, stent implantation in NIRS-defined LRPs was not associated with increased periprocedural or late adverse outcomes compared with those without significant lipid.