CBS 2019
CBSMD教育中心
中 文

DAPT Duration

Abstract

Recommended Article

Six Versus 12 Months of Dual Antiplatelet Therapy After Implantation of Biodegradable Polymer Sirolimus-Eluting Stent: Randomized Substudy of the I-LOVE-IT 2 Trial Inhibition of Platelet Aggregation After Coronary Stenting in Patients Receiving Oral Anticoagulation Comparison of 1-month Versus 12-month Dual Antiplatelet Therapy after Implantation of Drug-eluting Stents Guided by either Intravascular Ultrasound or Angiography in Patients with Acute Coronary Syndrome: Rationale and Design of Prospective, Multicenter, Randomized, Controlled IVUS-ACS & ULTIMATE-DAPT trial Mortality Following Cardiovascular and Bleeding Events Occurring Beyond 1 Year After Coronary Stenting - A Secondary Analysis of the Dual Antiplatelet Therapy (DAPT) Study Elaborately Engineering a Self-Indicating Dual-Drug Nanoassembly for Site-Specific Photothermal-Potentiated Thrombus Penetration and Thrombolysis Dual Antiplatelet Therapy Duration in Medically Managed Acute Coronary Syndrome Patients: Sub-Analysis of the OPT-CAD Study 6-month versus 12-month or longer dual antiplatelet therapy after percutaneous coronary intervention in patients with acute coronary syndrome (SMART-DATE): a randomised, open-label, non-inferiority trial 2016 ACC/AHA guideline focused update on duration of dual antiplatelet therapy in patients with coronary artery disease: A report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines

LetterVolume 69, Issue 3, May 2017, Pages 407-410

JOURNAL:Indian Heart J. Article Link

Optical coherence tomography is a kid on the block: I would choose intravascular ultrasound

Dash D. Keywords: Percutaneous coronary intervention; Intravscular ultrasound; Optical coherence tomography; Vulnerable plaque; Biodegradable vascular scaffold

ABSTRACT

Intravascular imaging has improved our understanding of in vivo pathophysiology of coronary artery disease (CAD) and predicted decision-making in percutaneous coronary intervention (PCI). Intravascular ultrasound (IVUS) has emerged as the first clinical imaging method contributing significantly to modern PCI techniques. This modality has outlived many other intravascular techniques 26 years after its inception. It has assisted us in understanding dynamics of atherosclerosis and provides several unique insights into plaque burden, remodeling, and restenosis. It is useful as an imaging endpoint in large progression-regression trial and as workhorse in many catheterization laboratories. IVUS guidance appears to be most beneficial in complex lesion subsets that are being treated with drug-eluting stents. The recent introduction of optical coherence tomography (OCT), a light based imaging technique, has further expanded this field because of its higher resolution and faster image acquisition. The omnipresence of OCT raises the question: Does IVUS have a role in the era of OCT? Whether OCT is superior to IVUS in routine clinical practice? Even if OCT is currently gaining clinical significance in detailed planning of interventional strategies and stent optimization in complex lesion subsets, it is the much younger technique and has to prove its worth. Nevertheless, undoubtedly IVUS plays significant role in studies on coronary atherosclerosis and for guidance of PCI. In fact, both the methods are complementary rather than competitive.