CBS 2019
CBSMD教育中心
中 文

左主干支架

Abstract

Recommended Article

Two-year outcomes following unprotected left main stenting with first vs new-generation drug-eluting stents: the FINE registry. EuroIntervention. Revascularization in Patients With Left Main Coronary Artery Disease and Left Ventricular Dysfunction Percutaneous Coronary Intervention Using Drug-Eluting Stents Versus Coronary Artery Bypass Grafting for Unprotected Left Main Coronary Artery Stenosis: A Meta-Analysis of Randomized Trials Stroke Rates Following Surgical Versus Percutaneous Coronary Revascularization Complex PCI procedures: challenges for the interventional cardiologist Ten-Year All-Cause Death According to Completeness of Revascularization in Patients With Three-Vessel Disease or Left Main Coronary Artery Disease: Insights From the SYNTAX Extended Survival Study Long-Term Outcomes After PCI or CABG for Left Main Coronary Artery Disease According to Lesion Location Comparison of Outcomes of Percutaneous Coronary Intervention on Native Coronary Arteries Versus on Saphenous Venous Aorta Coronary Conduits in Patients With Low Left Ventricular Ejection Fraction and Impella Device Implantation Achieved or Attempted (from the PROTECT II Randomized Trial and the cVAD Registry)

Original Research2011 Aug;32(16):2059-66.

JOURNAL:Eur Heart J. Article Link

Impact of plaque components on no-reflow phenomenon after stent deployment in patients with acute coronary syndrome: a virtual histology-intravascular ultrasound analysis

Hong YJ, Jeong MH, Choi YH et al. Keywords: coronary disease, stents, plaque, ultrasonics

ABSTRACT


AIMS We used virtual histology-intravascular ultrasound (VH-IVUS) to evaluate the relation between coronary plaque characteristics and no-reflow in acute coronary syndrome (ACS) patients.


METHODS AND RESULTS - A total of 190 consecutive ACS patients were imaged using VH-IVUS and analysed retrospectively. Angiographic no-reflow was defined as TIMI flow grade 0, 1, and 2 after stenting. Virtual histology-intravascular ultrasound classified the colour-coded tissue into four major components: fibrotic, fibro-fatty, dense calcium, and necrotic core (NC). Thin-cap fibroatheroma (TCFA) was defined as focal, NC-rich (≥10% of the cross-sectional area) plaques being in contact with the lumen in a plaque burden≥40%. Of the 190 patients studied at pre-stenting, no-reflow was observed in 24 patients (12.6%) at post-stenting. The absolute and %NC areas at the minimum lumen sites (1.6±1.2 vs. 0.9±0.8 mm2, P<0.001, and 24.5±14.3 vs. 16.1±10.6%, P=0.001, respectively) and the absolute and %NC volumes (30±24 vs. 16±17 mm3, P=0.001, and 22±11 vs. 14±8%, P<0.001, respectively) were significantly greater, and the presence of at least one TCFA and multiple TCFAs within culprit lesions (71 vs. 36%, P=0.001, and 38 vs. 15%, P=0.005, respectively) was significantly more common in the no-reflow group compared with the normal-reflow group. In the multivariable analysis, %NC volume was the only independent predictor of no-reflow (odds ratio=1.126; 95% CI 1.045-1.214, P=0.002).

CONCLUSION - In ACS patients, post-stenting no-reflow is associated with plaque components defined by VH-IVUS analysis with larger NC and more TCFAs.