CBS 2019
CBSMD教育中心
中 文

血管内超声指导

Abstract

Recommended Article

Plaque composition by intravascular ultrasound and distal embolization after percutaneous coronary intervention Meta-analysis of outcomes after intravascular ultrasound-guided versus angiography-guided drug-eluting stent implantation in 26,503 patients enrolled in three randomized trials and 14 observational studies Assessment of coronary atherosclerosis by IVUS and IVUS-based imaging modalities: progression and regression studies, tissue composition and beyond Intravascular ultrasound-guided implantation of drug-eluting stents to improve outcome: a meta-analysis Relationship between intravascular ultrasound guidance and clinical outcomes after drug-eluting stents: the assessment of dual antiplatelet therapy with drug-eluting stents (ADAPT-DES) study Clinical impact of intravascular ultrasound-guided chronic total occlusion intervention with zotarolimus-eluting versus biolimus-eluting stent implantation: randomized study Mechanical complications of everolimus-eluting stents associated with adverse events: an intravascular ultrasound study Intravascular ultrasound predictors for edge restenosis after newer generation drug-eluting stent implantation

LetterVolume 69, Issue 3, May 2017, Pages 407-410

JOURNAL:Indian Heart J. Article Link

Optical coherence tomography is a kid on the block: I would choose intravascular ultrasound

Dash D. Keywords: Percutaneous coronary interventionIntravscular ultrasoundOptical coherence tomographyVulnerable plaqueBiodegradable vascular scaffold

ABSTRACT

Intravascular imaging has improved our understanding of in vivo pathophysiology of coronary artery disease (CAD) and predicted decision-making in percutaneous coronary intervention (PCI). Intravascular ultrasound (IVUS) has emerged as the first clinical imaging method contributing significantly to modern PCI techniques. This modality has outlived many other intravascular techniques 26 years after its inception. It has assisted us in understanding dynamics of atherosclerosis and provides several unique insights into plaque burden, remodeling, and restenosis. It is useful as an imaging endpoint in large progression-regression trial and as workhorse in many catheterization laboratories. IVUS guidance appears to be most beneficial in complex lesion subsets that are being treated with drug-eluting stents. The recent introduction of optical coherence tomography (OCT), a light based imaging technique, has further expanded this field because of its higher resolution and faster image acquisition. The omnipresence of OCT raises the question: Does IVUS have a role in the era of OCT? Whether OCT is superior to IVUS in routine clinical practice? Even if OCT is currently gaining clinical significance in detailed planning of interventional strategies and stent optimization in complex lesion subsets, it is the much younger technique and has to prove its worth. Nevertheless, undoubtedly IVUS plays significant role in studies on coronary atherosclerosis and for guidance of PCI. In fact, both the methods are complementary rather than competitive.