CBS 2019
CBSMD教育中心
中 文

Fractional Flow Reserve

Abstract

Recommended Article

Long-term Variations of FFR and iFR After Transcatheter Aortic Valve Implantation Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter DISCOVER-FLOW Clinical Significance of Concordance or Discordance Between Fractional Flow Reserve and Coronary Flow Reserve for Coronary Physiological Indices, Microvascular Resistance, and Prognosis After Elective Percutaneous Coronary Intervention Machine Learning Approaches in Cardiovascular Imaging Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (Analysis of Coronary Blood Flow Using CT Angiography: Next Steps) Experimental basis of determining maximum coronary, myocardial, and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after percutaneous transluminal coronary angioplasty Five-Year Outcomes with PCI Guided by Fractional Flow Reserve Fractional flow reserve derived from computed tomography coronary angiography in the assessment and management of stable chest pain: the FORECAST randomized trial

Clinical TrialNovember 4, 2021

JOURNAL:N Engl J Med. Article Link

Fractional Flow Reserve–Guided PCI as Compared with Coronary Bypass Surgery

WF Fearon, FM Zimmermann, the FAME 3 Investigators et al. Keywords: FFR-guided vs. angiography-guided procedure; PCI vs. CABG; multivessel; RCT

ABSTRACT

BACKGROUND - Patients with three-vessel coronary artery disease have been found to have better outcomes with coronary-artery bypass grafting (CABG) than with percutaneous coronary intervention (PCI), but studies in which PCI is guided by measurement of fractional flow reserve (FFR) have been lacking.

 

METHODS - In this multicenter, international, noninferiority trial, patients with three-vessel coronary artery disease were randomly assigned to undergo CABG or FFR-guided PCI with current-generation zotarolimus-eluting stents. The primary end point was the occurrence within 1 year of a major adverse cardiac or cerebrovascular event, defined as death from any cause, myocardial infarction, stroke, or repeat revascularization. Noninferiority of FFR-guided PCI to CABG was prespecified as an upper boundary of less than 1.65 for the 95% confidence interval of the hazard ratio. Secondary end points included a composite of death, myocardial infarction, or stroke; safety was also assessed.

 

RESULTS - A total of 1500 patients underwent randomization at 48 centers. Patients assigned to undergo PCI received a mean (±SD) of 3.7±1.9 stents, and those assigned to undergo CABG received 3.4±1.0 distal anastomoses. The 1-year incidence of the composite primary end point was 10.6% among patients randomly assigned to undergo FFR-guided PCI and 6.9% among those assigned to undergo CABG (hazard ratio, 1.5; 95% confidence interval [CI], 1.1 to 2.2), findings that were not consistent with noninferiority of FFR-guided PCI (P=0.35 for noninferiority). The incidence of death, myocardial infarction, or stroke was 7.3% in the FFR-guided PCI group and 5.2% in the CABG group (hazard ratio, 1.4; 95% CI, 0.9 to 2.1). The incidences of major bleeding, arrhythmia, and acute kidney injury were higher in the CABG group than in the FFR-guided PCI group.

 

CONCLUSIONS - In patients with three-vessel coronary artery disease, FFR-guided PCI was not found to be noninferior to CABG with respect to the incidence of a composite of death, myocardial infarction, stroke, or repeat revascularization at 1 year. (Funded by Medtronic and Abbott Vascular; FAME 3 ClinicalTrials.gov number, NCT02100722. )