CBS 2019
CBSMD教育中心
中 文

Fractional Flow Reserve

Abstract

Recommended Article

Long-term Variations of FFR and iFR After Transcatheter Aortic Valve Implantation Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter DISCOVER-FLOW Clinical Significance of Concordance or Discordance Between Fractional Flow Reserve and Coronary Flow Reserve for Coronary Physiological Indices, Microvascular Resistance, and Prognosis After Elective Percutaneous Coronary Intervention Machine Learning Approaches in Cardiovascular Imaging Diagnostic performance of noninvasive fractional flow reserve derived from coronary computed tomography angiography in suspected coronary artery disease: the NXT trial (Analysis of Coronary Blood Flow Using CT Angiography: Next Steps) Experimental basis of determining maximum coronary, myocardial, and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after percutaneous transluminal coronary angioplasty Five-Year Outcomes with PCI Guided by Fractional Flow Reserve Fractional flow reserve derived from computed tomography coronary angiography in the assessment and management of stable chest pain: the FORECAST randomized trial

Clinical Trial1998 Aug;19(8):1224-31.

JOURNAL:Eur Heart J. Article Link

Treatment of calcified coronary lesions with Palmaz-Schatz stents. An intravascular ultrasound study

Hoffmann R, Mintz GS, Popma JJ et al. Keywords: calcified coronary lesions; intracoronary stents, IVUS, rotational atherectomy

ABSTRACT


AIMSTo evaluate the result of coronary stenting in calcified lesions and to find morphological and procedural factors influencing the final result.


METHODS AND RESULTS - Three hundred and twenty three native coronary artery lesions in 303 patients (197 men, mean age 63.9 +/- 11.5 years) treated with Palmaz-Schatz stents were differentiated into four groups depending on their degree of circumferential calcification as defined by intravascular ultrasound [0-90 degrees (n=120), 91-180 degrees (n=58, 181-270$ (n=71) and 271-360 degrees n=74)]. In 117 lesions rotational atherectomy was used prior to stent placement. Intravascular ultrasound and quantitative angiography were performed prior to treatment and after stent placement to measure minimal and maximal lumen diameter and lumen cross-sectional area at the lesion site and the reference segments. Acute lumen gain and eccentricity index were calculated. Although higher balloon pressures were used than in the minimally calcified lesions. the final angiographic minimal lumen diameter decreased with increasing arc of calcification (3.01 +/- 0.47, 3.04 +/- 0.43, 2.85 +/- 0.53, 2.83 +/- 0.40 mm, respectively, P=0.0320) resulting in a decrease in acute diameter gain with increasing arc of calcification (2.06 +/- 0.51, 1.91 +/- 0.46, 1.81 +/- 0.56, 1.78 +/- 0.51 mm, respectively, P=0.0067). Adjunctive rotational atherectomy prior to stent placement resulted in a greater acute diameter and a greater lumen cross-sectional area gain, coupled with less final residual stenosis than pre-treatment with balloon angioplasty.

CONCLUSION - Implantation of stents in calcified lesions results in less optimal stent expansion, especially in lesions with thick, eccentric calcific plaque layers. Use of adjunctive rotational atherectomy before stent placement may improve the procedural result.