CBS 2019
CBSMD教育中心
中 文

Fractional Flow Reserve

Abstract

Recommended Article

Coronary CT Angiographic and Flow Reserve-Guided Management of Patients With Stable Ischemic Heart Disease Coronary fractional flow reserve in bifurcation stenoses: what have we learned? The Natural History of Nonculprit Lesions in STEMI: An FFR Substudy of the Compare-Acute Trial Fractional flow reserve-guided PCI for stable coronary artery disease Individual Lesion-Level Meta-Analysis Comparing Various Doses of Intracoronary Bolus Injection of Adenosine With Intravenous Administration of Adenosine for Fractional Flow Reserve Assessment The impact of downstream coronary stenoses on fractional flow reserve assessment of intermediate left main disease Retrospective Comparison of Long-Term Clinical Outcomes Between Percutaneous Coronary Intervention and Medical Therapy in Stable Coronary Artery Disease With Gray Zone Fractional Flow Reserve - COMFORTABLE Retrospective Study Anatomical and Functional Computed Tomography for Diagnosing Hemodynamically Significant Coronary Artery Disease: A Meta-Analysis

Clinical Trial2013 Mar;6(3):228-36.

JOURNAL:JACC Cardiovasc Interv. Article Link

Optical coherence tomography versus intravascular ultrasound to evaluate coronary artery disease and percutaneous coronary intervention

Bezerra HG, Attizzani GF, Sirbu V et al. Keywords: IVUS; OCT; PCI

ABSTRACT


OBJECTIVESWe compared intravascular ultrasound (IVUS) and 2 different generations of optical coherence tomography (OCT)-time-domain OCT (TD-OCT) and frequency-domain OCT (FD-OCT)-for the assessment of coronary disease and percutaneous coronary intervention (PCI) using stents.


BACKGROUND - OCT is a promising light-based intravascular imaging modality with higher resolution than IVUS. However, the paucity of data on OCT image quantification has limited its application in clinical practice.

METHODS - A total of 227 matched OCT and IVUS pull backs were studied. One hundred FD-OCT and IVUS pull backs in nonstented (n = 56) and stented (n = 44) vessels were compared. Additionally, 127 matched TD-OCT and IVUS images were compared in stented vessels.

RESULTS - FD-OCT depicted more severe native coronary disease than IVUS; minimal lumen area (MLA) was 2.33 ± 1.56 mm(2) versus 3.32 ± 1.92 mm(2), respectively (p < 0.001). Reference vessel dimensions were equivalent between FD-OCT and IVUS in both native and stented coronaries, but TD-OCT detected smaller reference lumen size compared with IVUS. Immediately post-PCI, in-stent MLAs were similar between FD-OCT and IVUS, but at follow-up, both FD-OCT and TD-OCT detected smaller MLAs than did IVUS, likely due to better detection of neointimal hyperplasia (NIH). Post-PCI malapposition and tissue prolapse were more frequently identified by FD-OCT.

CONCLUSIONS - FD-OCT generates similar reference lumen dimensions but higher degrees of disease severity and NIH, as well as better detection of malapposition and tissue prolapse compared with IVUS. First-generation TD-OCT was associated with smaller reference vessel dimensions compared with IVUS.

Copyright © 2013 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.