CBS 2019
CBSMD教育中心
中 文

充血性心力衰竭

Abstract

Recommended Article

Lower Risk of Heart Failure and Death in Patients Initiated on SGLT-2 Inhibitors Versus Other Glucose-Lowering Drugs: The CVD-REAL Study HFpEF: From Mechanisms to Therapies Progression of Device-Detected Subclinical Atrial Fibrillation and the Risk of Heart Failure Improving the Use of Primary Prevention Implantable Cardioverter-Defibrillators Therapy With Validated Patient-Centric Risk Estimates Good response to tolvaptan shortens hospitalization in patients with congestive heart failure Cardiac Implantable Electronic Devices in Patients With Left Ventricular Assist Systems Can We Use the Intrinsic Left Ventricular Delay (QLV) to Optimize the Pacing Configuration for Cardiac Resynchronization Therapy With a Quadripolar Left Ventricular Lead? Respiratory Syncytial Virus and Associations With Cardiovascular Disease in Adults

Review Article2018 May 21;20(7):33.

JOURNAL:Curr Atheroscler Rep. Article Link

A Survey on Coronary Atherosclerotic Plaque Tissue Characterization in Intravascular Optical Coherence Tomography

Boi A, Jamthikar AD, Suri JS et al. Keywords: Atherosclerosis; Cardiovascular disease; Coronary; Machine learning and deep learning; Optical coherence tomography; Plaque characterization; Risk stratification

ABSTRACT


PURPOSE OF REVIEW - Atherosclerotic plaque deposition within the coronary vessel wall leads to arterial stenosis and severe catastrophic events over time. Identification of these atherosclerotic plaque components is essential to pre-estimate the risk of cardiovascular disease (CVD) and stratify them as a high or low risk. The characterization and quantification of coronary plaque components are not only vital but also a challenging task which can be possible using high-resolution imaging techniques.


RECENT FINDING - Atherosclerotic plaque components such as thin cap fibroatheroma (TCFA), fibrous cap, macrophage infiltration, large necrotic core, and thrombus are the microstructural plaque components that can be detected with only high-resolution imaging modalities such as intravascular ultrasound (IVUS) and optical coherence tomography (OCT). Light-based OCT provides better visualization of plaque tissue layers of coronary vessel walls as compared to IVUS. Three dominant paradigms have been identified to characterize atherosclerotic plaque components based on optical attenuation coefficients, machine learning algorithms, and deep learning techniques. This review (condensation of 126 papers after downloading 150 articles) presents a detailed comparison among various methodologies utilized for plaque tissue characterization, classification, and arterial measurements in OCT. Furthermore, this review presents the different ways to predict and stratify the risk associated with the CVD based on plaque characterization and measurements in OCT. Moreover, this review discovers three different paradigms for plaque characterization and their pros and cons. Among all of the techniques, a combination of machine learning and deep learning techniques is a best possible solution that provides improved OCT-based risk stratification.