CBS 2019
CBSMD教育中心
中 文

ASCVD Prevention

Abstract

Recommended Article

Comprehensive Management of Cardiovascular Risk Factors for Adults With Type 2 Diabetes: A Scientific Statement From the American Heart Association A Review of the Role of Breast Arterial Calcification for Cardiovascular Risk Stratification in Women Preventive Cardiology as a Subspecialty of Cardiovascular Medicine: JACC Council Perspectives 2017 AHA/ACC/HRS Guideline for Management of Patients With Ventricular Arrhythmias and the Prevention of Sudden Cardiac Death: Executive Summary: A Report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines and the Heart Rhythm Society Hypertension: Do Inflammation and Immunity Hold the Key to Solving this Epidemic? The Use of Sex-Specific Factors in the Assessment of Women’s Cardiovascular Risk Effects of empagliflozin on first and recurrent clinical events in patients with type 2 diabetes and atherosclerotic cardiovascular disease: a secondary analysis of the EMPA-REG OUTCOME trial CT Angiographic and Plaque Predictors of Functionally Significant Coronary Disease and Outcome Using Machine Learning

Clinical Trial2018 Sep 27;379(13):1205-1215.

JOURNAL:N Engl J Med. Article Link

Wearable Cardioverter-Defibrillator after Myocardial Infarction

Olgin JE, Pletcher MJ, VEST Investigators et al. Keywords: wearable cardioverter–defibrillator; myocardial infarction; sudden death prevention

ABSTRACT


BACKGROUND - Despite the high rate of sudden death after myocardial infarction among patients with a low ejection fraction, implantable cardioverter-defibrillators are contraindicated until 40 to 90 days after myocardial infarction. Whether a wearable cardioverter-defibrillator would reduce the incidence of sudden death during this high-risk period is unclear.


METHODS - We randomly assigned (in a 2:1 ratio) patients with acute myocardial infarction and an ejection fraction of 35% or less to receive a wearable cardioverter-defibrillator plus guideline-directed therapy (the device group) or to receive only guideline-directed therapy (the control group). The primary outcome was the composite of sudden death or death from ventricular tachy arrhythmia at 90 days (arrhythmic death). Secondary outcomes included death from any cause and nonarrhythmic death.


RESULTS - Of 2302 participants, 1524 were randomly assigned to the device group and 778 to the control group. Participants in the device group wore the device for a median of 18.0 hours per day (interquartile range, 3.8 to 22.7). Arrhythmic death occurred in 1.6% of the participants in the device group and in 2.4% of those in the control group (relative risk, 0.67; 95% confidence interval [CI], 0.37 to 1.21; P=0.18). Death from any cause occurred in 3.1% of the participants in the device group and in 4.9% of those in the control group (relative risk, 0.64; 95% CI, 0.43 to 0.98; uncorrected P=0.04), and nonarrhythmic death in 1.4% and 2.2%, respectively (relative risk, 0.63; 95% CI, 0.33 to 1.19; uncorrected P=0.15). Of the 48 participants in the device group who died, 12 were wearing the device at the time of death. A total of 20 participants in the device group (1.3%) received an appropriate shock, and 9 (0.6%) received an inappropriate shock.


CONCLUSIONS - Among patients with a recent myocardial infarction and an ejection fraction of 35% or less, the wearable cardioverter-defibrillator did not lead to a significantly lower rate of the primary outcome of arrhythmic death than control. (Funded by the National Institutes of Health and Zoll Medical; VEST ClinicalTrials.gov number, NCT01446965 .).