CBS 2019
CBSMD教育中心
中 文

ASCVD Prevention

Abstract

Recommended Article

Canagliflozin and Cardiovascular and Renal Events in Type 2 Diabetes Sleep quality and risk of coronary heart disease-a prospective cohort study from the English longitudinal study of ageing 2019 AHA/ACC Clinical Performance and Quality Measures for Adults With High Blood Pressure: A Report of the American College of Cardiology/American Heart Association Task Force on Performance Measures Coronary calcification in the diagnosis of coronary artery disease Stage-dependent differential effects of interleukin-1 isoforms on experimental atherosclerosis Sequence variations in PCSK9, low LDL, and protection against coronary heart disease Colchicine Reduces Cardiovascular Events in Chronic Coronary Disease From Focal Lipid Storage to Systemic Inflammation

Original Research2019 Mar;35(3):401-407.

JOURNAL:Int J Cardiovasc Imaging. Article Link

Impact of tissue protrusion after coronary stenting in patients with ST-segment elevation myocardial infarction

Okuya Y, Saito Y, Sakai Y et al. Keywords: ntravascular ultrasound; Prognosis; ST-segment elevation myocardial infarction; Tissue protrusion

ABSTRACT


Clinical impact of tissue protrusion (TP) after coronary stenting is still controversial, especially in patients with ST-segment elevation myocardial infarction (STEMI). A total of 104 STEMI patients without previous MI who underwent primary percutaneous coronary intervention (PCI) under intravascular ultrasound (IVUS)-guidance were included. Post-stenting grayscale IVUS analysis was performed, and the patients were classified according to the presence or absence of post-stenting TP on IVUS. Coronary angiography and single-photon emission computed tomography myocardial perfusion imaging (SPECT MPI) with 99mTc tetrofosmin were analyzed. Major adverse cardiac events were defined as cardiovascular death, myocardial infarction, heart failure hospitalization, and target vessel revascularization. TP on IVUS was detected in 62 patients (60%). Post-PCI coronaryflow was more impaired, and peak creatine kinase-myoglobin binding level was higher in patients with TP compared to those without. SPECT MPI was performed in 77 out of 104 patients (74%) at 35.4 ± 7.7 days after primary PCI. In patients with TP, left ventricular ejection fraction was significantly reduced (47.5 ± 12.0% vs. 57.6 ± 11.2%, p < 0.001), and infarct size was larger [17% (8-25) vs. 4% (0-14), p = 0.002] on SPECT MPI. During a median follow-up of 14 months after primary PCI, Kaplan-Meier analysis demonstrated a significantly higher incidence of major adverse cardiac events in patients with TP compared to those without. TP on IVUS after coronary stenting was associated with poor outcomes in patients with STEMI.